Modal Substructuring of Geometrically Nonlinear Finite Element Models with Interface Reduction

Substructuring methods have been widely used in structural dynamics to divide large, complicated finite element models into smaller substructures. For linear systems, many methods have been develop...

[1]  Stephen A. Rizzi,et al.  The Effect of Basis Selection on Static and Random Acoustic Response Prediction Using a Nonlinear Modal Simulation , 2013 .

[2]  Stephen A. Rizzi,et al.  The Effect of Basis Selection on Thermal-Acoustic Random Response Prediction Using Nonlinear Modal Simulation , 2004 .

[3]  Marc P. Mignolet,et al.  NONLINEAR REDUCED ORDER MODELING OF ISOTROPIC AND FUNCTIONALLY GRADED PLATES , 2008 .

[4]  Joseph J. Hollkamp,et al.  Nonlinear modal models for sonic fatigue response prediction: a comparison of methods , 2005 .

[5]  Ricardo Perez Multiscale Reduced Order Models for the Geometrically Nonlinear Response of Complex Structures , 2012 .

[6]  Jonathan E. Cooper,et al.  a Combined Modal/finite Element Analysis Technique for the Dynamic Response of a Non-Linear Beam to Harmonic Excitation , 2001 .

[7]  M. Bampton,et al.  Coupling of substructures for dynamic analyses. , 1968 .

[8]  G. Kerschen,et al.  Dynamic testing of nonlinear vibrating structures using nonlinear normal modes , 2011 .

[9]  Gaëtan Kerschen,et al.  Nonlinear normal modes, Part II: Toward a practical computation using numerical continuation techniques , 2009 .

[10]  Demeter G. Fertis,et al.  Mechanical And Structural Vibrations , 1995 .

[11]  Stephen A. Rizzi,et al.  Estimation of Sonic Fatigue by Reduced-Order Finite Element Based Analyses , 2006 .

[12]  Joseph J. Hollkamp,et al.  Reduced-order models for nonlinear response prediction: Implicit condensation and expansion , 2008 .

[13]  R. Craig,et al.  On the use of attachment modes in substructure coupling for dynamic analysis , 1977 .

[14]  David J. Wagg,et al.  Interpreting the forced responses of a two-degree-of-freedom nonlinear oscillator using backbone curves , 2015 .

[15]  Stijn Donders,et al.  The wave-based substructuring approach for the efficient description of interface dynamics in substructuring , 2010 .

[16]  David J. Wagg,et al.  Bifurcations of backbone curves for systems of coupled nonlinear two mass oscillator , 2014 .

[17]  S. Rizzi,et al.  Determination of nonlinear stiffness with application to random vibration of geometrically nonlinear structures , 2003 .

[18]  Joseph J. Hollkamp,et al.  Reduced-Order Models for Acoustic Response Prediction of a Curved Panel , 2011 .

[19]  Matthew S. Allen,et al.  Relationships between Nonlinear Normal Modes and Response to Random Inputs , 2014 .

[20]  Cv Clemens Verhoosel,et al.  Non-Linear Finite Element Analysis of Solids and Structures , 1991 .

[21]  Matthew S. Allen,et al.  Experimental modal substructuring to couple and uncouple substructures with flexible fixtures and multi-point connections , 2010 .

[22]  Andrew J. Kurdila,et al.  『Fundamentals of Structural Dynamics』(私の一冊) , 2019, Journal of the Society of Mechanical Engineers.

[23]  Ricardo Perez,et al.  Nonintrusive Structural Dynamic Reduced Order Modeling for Large Deformations: Enhancements for Complex Structures , 2014 .

[24]  Matthew S. Allen,et al.  A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models , 2014 .

[25]  R. Macneal A hybrid method of component mode synthesis , 1971 .

[26]  Stephen A. Rizzi,et al.  System identification-guided basis selection for reduced-order nonlinear response analysis , 2008 .

[27]  Matthew S. Allen,et al.  Craig-Bampton Substructuring for Geometrically Nonlinear Subcomponents , 2014 .

[28]  Joseph J. Hollkamp,et al.  Nonlinear Sonic Fatigue Response Prediction from Finite Element Modal Models: A Comparison with Experiments , 2003 .

[29]  Jerry H. Ginsberg,et al.  Mechanical and Structural Vibrations: Theory and Applications , 2001 .

[30]  Matthew S. Allen,et al.  Nonlinear Modal Substructuring of Systems with Geometric Nonlinearities , 2013 .

[31]  Stephen A. Rizzi,et al.  Alternative Modal Basis Selection Procedures For Reduced-Order Nonlinear Random Response Simulation , 2012 .

[32]  R. Hintz Analytical Methods in Component Modal Synthesis , 1975 .

[33]  Matthew S. Allen,et al.  Evaluation of Geometrically Nonlinear Reduced-Order Models with Nonlinear Normal Modes , 2015 .

[34]  Hans Irschik,et al.  Efficient Mode Based Computational Approach for Jointed Structures: Joint Interface Modes , 2009 .

[35]  Matthew S. Allen,et al.  Modal Substructuring of Geometrically Nonlinear Finite-Element Models , 2016 .

[36]  Joseph J. Hollkamp,et al.  Modeling vibratory damage with reduced-order models and the generalized finite element method , 2014 .

[37]  D. Tran,et al.  Component mode synthesis methods using interface modes. Application to structures with cyclic symmetry , 2001 .

[38]  B. Epureanu,et al.  Next-Generation Parametric Reduced-Order Models , 2013 .

[39]  Matthew S. Allen,et al.  Nonlinear normal modes modal interactions and isolated resonance curves , 2015, 1604.05567.

[40]  Alexander F. Vakakis,et al.  Normal modes and localization in nonlinear systems , 1996 .

[41]  Matthew Robert Brake,et al.  Evaluating Convergence of Reduced Order Models Using Nonlinear Normal Modes. , 2014 .

[42]  S. Michael Spottswood,et al.  A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures , 2013 .

[43]  David J. Wagg,et al.  An analytical method for the optimisation of weakly nonlinear systems , 2014 .

[44]  S. Rubin Improved Component-Mode Representation for Structural Dynamic Analysis , 1975 .

[45]  W. Hurty Dynamic Analysis of Structural Systems Using Component Modes , 1965 .

[46]  Alexander F. Vakakis,et al.  Nonlinear normal modes, Part I: A useful framework for the structural dynamicist , 2009 .

[47]  C. Pierre,et al.  Characteristic Constraint Modes for Component Mode Synthesis , 2001 .