Supermodularity and valid inequalities for quadratic optimization with indicators

We study the minimization of a rank-one quadratic with indicators and show that the underlying set function obtained by projecting out the continuous variables is supermodular. Although supermodular minimization is, in general, difficult, the specific set function for the rank-one quadratic can be minimized in linear time. We show that the convex hull of the epigraph of the quadratic can be obtaining from inequalities for the underlying supermodular set function by lifting them into nonlinear inequalities in the original space of variables. Explicit forms of the convex-hull description are given, both in the original space of variables and in an extended formulation via conic quadraticrepresentable inequalities, along with a polynomial separation algorithm. Computational experiments indicate that the lifted supermodular inequalities in conic quadratic form are quite effective in reducing the integrality gap for quadratic optimization with indicators.

[1]  Jeff T. Linderoth,et al.  Regularization vs. Relaxation: A conic optimization perspective of statistical variable selection , 2015, ArXiv.

[2]  Shabbir Ahmed,et al.  Polyhedral results for a class of cardinality constrained submodular minimization problems , 2017, Discret. Optim..

[3]  Daniel Bienstock,et al.  Cutting-Planes for Optimization of Convex Functions over Nonconvex Sets , 2014, SIAM J. Optim..

[4]  Ted K. Ralphs,et al.  Integer and Combinatorial Optimization , 2013 .

[6]  Alper Atamtürk,et al.  Supermodular covering knapsack polytope , 2015, Discret. Optim..

[7]  Christian Tjandraatmadja,et al.  The Convex Relaxation Barrier, Revisited: Tightened Single-Neuron Relaxations for Neural Network Verification , 2020, NeurIPS.

[8]  Jeff T. Linderoth,et al.  Quadratic cone cutting surfaces for quadratic programs with on-off constraints , 2017, Discret. Optim..

[9]  James B. Orlin,et al.  A faster strongly polynomial time algorithm for submodular function minimization , 2007, Math. Program..

[10]  Oleg A. Prokopyev,et al.  Sequence independent lifting for a set of submodular maximization problems , 2020, Mathematical Programming.

[11]  Alper Atamtürk,et al.  Submodularity in Conic Quadratic Mixed 0-1 Optimization , 2017, Oper. Res..

[12]  Simge Küçükyavuz,et al.  Ideal formulations for constrained convex optimization problems with indicator variables , 2020, ArXiv.

[13]  Shabbir Ahmed,et al.  Maximizing a class of submodular utility functions with constraints , 2017, Math. Program..

[14]  Oktay Günlük,et al.  Perspective reformulations of mixed integer nonlinear programs with indicator variables , 2010, Math. Program..

[15]  Sven Leyffer,et al.  Minotaur: a mixed-integer nonlinear optimization toolkit , 2021, Math. Program. Comput..

[16]  Alper Atamtürk,et al.  Path Cover and Path Pack Inequalities for the Capacitated Fixed-Charge Network Flow Problem , 2017, SIAM J. Optim..

[17]  Lisa Turner,et al.  Applications of Second Order Cone Programming , 2012 .

[18]  Laurence A. Wolsey,et al.  Valid inequalities for mixed 0-1 programs , 1986, Discret. Appl. Math..

[19]  Simge Küçükyavuz,et al.  A Polyhedral Approach to Bisubmodular Function Minimization , 2021, Oper. Res. Lett..

[20]  Simge Küçükyavuz,et al.  Maximizing Influence in Social Networks: A Two-Stage Stochastic Programming Approach That Exploits Submodularity , 2015, ArXiv.

[21]  藤重 悟 Submodular functions and optimization , 1991 .

[22]  Xinwei Deng,et al.  The CCP Selector: Scalable Algorithms for Sparse Ridge Regression from Chance-Constrained Programming , 2018, 1806.03756.

[23]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[24]  Alper Atamtürk,et al.  Flow pack facets of the single node fixed-charge flow polytope , 2001, Oper. Res. Lett..

[25]  Claudio Gentile,et al.  Decompositions of Semidefinite Matrices and the Perspective Reformulation of Nonseparable Quadratic Programs , 2020, Math. Oper. Res..

[26]  Alper Atamtürk,et al.  A study of the lot-sizing polytope , 2004, Math. Program..

[27]  Nikolaos V. Sahinidis,et al.  A combined first-principles and data-driven approach to model building , 2015, Comput. Chem. Eng..

[28]  C. Gentile,et al.  Tighter Approximated MILP Formulations for Unit Commitment Problems , 2009, IEEE Transactions on Power Systems.

[29]  Jean-Philippe P. Richard,et al.  Lifting inequalities: a framework for generating strong cuts for nonlinear programs , 2010, Math. Program..

[30]  Andrés Gómez,et al.  Outlier Detection in Time Series via Mixed-Integer Conic Quadratic Optimization , 2021, SIAM J. Optim..

[31]  Yves Pochet Valid inequalities and separation for capacitated economic lot sizing , 1988 .

[32]  Pierre Bonami,et al.  On mathematical programming with indicator constraints , 2015, Math. Program..

[33]  Hassan L. Hijazi,et al.  Mixed-integer nonlinear programs featuring “on/off” constraints , 2012, Comput. Optim. Appl..

[34]  Alper Atamtürk,et al.  Strong formulations for quadratic optimization with M-matrices and indicator variables , 2018, Math. Program..

[35]  Alper Atamtürk,et al.  Rank-one Convexification for Sparse Regression , 2019, ArXiv.

[36]  Alper Atamtürk,et al.  Maximizing a class of submodular utility functions , 2011, Math. Program..

[37]  Simge Küçükyavuz,et al.  On the Convexification of Constrained Quadratic Optimization Problems with Indicator Variables , 2020, IPCO.

[38]  Claudio Gentile,et al.  SDP diagonalizations and perspective cuts for a class of nonseparable MIQP , 2007, Oper. Res. Lett..

[39]  Daniel Bienstock,et al.  Computational Study of a Family of Mixed-Integer Quadratic Programming Problems , 1995, IPCO.

[40]  Martin W. P. Savelsbergh,et al.  Valid inequalities for problems with additive variable upper bounds , 1999, Math. Program..

[41]  Duan Li,et al.  Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach , 2014, INFORMS J. Comput..

[42]  Ali Shojaie,et al.  Integer Programming for Learning Directed Acyclic Graphs from Continuous Data , 2019, INFORMS J. Optim..

[43]  Sebastián Ceria,et al.  Convex programming for disjunctive convex optimization , 1999, Math. Program..

[44]  ANDRÉS GÓMEZ,et al.  Strong formulations for conic quadratic optimization with indicator variables , 2020, Math. Program..

[45]  Laurence A. Wolsey,et al.  Submodularity and valid inequalities in capacitated fixed charge networks , 1989 .

[46]  Martin Grötschel,et al.  The ellipsoid method and its consequences in combinatorial optimization , 1981, Comb..

[47]  Claudio Gentile,et al.  Perspective cuts for a class of convex 0–1 mixed integer programs , 2006, Math. Program..

[48]  Alper Atamtürk,et al.  Sparse and Smooth Signal Estimation: Convexification of L0 Formulations , 2018, J. Mach. Learn. Res..

[49]  Xiaojin Zheng,et al.  Quadratic Convex Reformulations for Semicontinuous Quadratic Programming , 2017, SIAM J. Optim..

[50]  Jeff T. Linderoth,et al.  On Valid Inequalities for Quadratic Programming with Continuous Variables and Binary Indicators , 2013, IPCO.

[51]  Jean-Philippe P. Richard,et al.  Deriving convex hulls through lifting and projection , 2018, Math. Program..

[52]  Francis Bach,et al.  Submodular functions: from discrete to continuous domains , 2015, Mathematical Programming.

[53]  Fatma Kilincc-Karzan,et al.  Joint chance-constrained programs and the intersection of mixing sets through a submodularity lens , 2019 .

[54]  Sinan Gürel,et al.  A strong conic quadratic reformulation for machine-job assignment with controllable processing times , 2009, Oper. Res. Lett..

[55]  Donald Goldfarb,et al.  Second-order cone programming , 2003, Math. Program..

[56]  Alper Atamtürk,et al.  $$\mathbf {2\times 2}$$ 2 × 2 -Convexifications for convex quadratic optimization with indicator variables , 2023, Mathematical Programming.

[57]  Laurence A. Wolsey,et al.  Valid Linear Inequalities for Fixed Charge Problems , 1985, Oper. Res..

[58]  Dimitris Bertsimas,et al.  OR Forum - An Algorithmic Approach to Linear Regression , 2016, Oper. Res..