Integrated single-inductor dual-input dual-output boost converter for energy harvesting applications

An integrated single-inductor dual-input dual-output (SI DIDO) boost converter for energy harvesting applications was designed in a 0.35 mum CMOS process. It provides two regulated output voltages for the load and the charge storage device, and two sources, the energy harvesting source and the charge storage device, are multiplexed to serve as the input. The implementation has several special features. (1) The input power MUX is driven by an internal charge pump for a larger gate drive to save area. (2) The power stage is implemented with an active diode core to eliminate gate drive circuitry. (3) A 1:7 timeslot scheduling with a fixed peak inductor current is adopted to deliver energy to the two outputs with a large difference in load currents. The proposed converter could operate at IV with up to 85% efficiency at 200 mW.

[1]  Chi-Ying Tsui,et al.  Single-inductor multiple-output switching converters with time-multiplexing control in discontinuous conduction mode , 2003, IEEE J. Solid State Circuits.

[2]  Gyu-Hyeong Cho,et al.  An integrated CMOS DC-DC converter for battery-operated systems , 1999, 30th Annual IEEE Power Electronics Specialists Conference. Record. (Cat. No.99CH36321).

[3]  Erick O. Torres,et al.  SiP integration of intelligent, adaptive, self-sustaining power management solutions for portable applications , 2006, 2006 IEEE International Symposium on Circuits and Systems.

[4]  Chi-Ying Tsui,et al.  Integrated Low-Loss CMOS Active Rectifier for Wirelessly Powered Devices , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.