Secrecy gain: A wiretap lattice code design

We propose the notion of secrecy gain as a code design criterion for wiretap lattice codes to be used over an additive white Gaussian noise channel. Our analysis relies on the error probabilites of both the legitimate user and the eavesdropper. We focus on geometrical properties of lattices, described by their theta series, to characterize good wiretap codes.

[1]  Aylin Yener,et al.  Providing Secrecy With Structured Codes: Tools and Applications to Two-User Gaussian Channels , 2009, ArXiv.

[2]  A. D. Wyner,et al.  The wire-tap channel , 1975, The Bell System Technical Journal.

[3]  W. Fischer,et al.  Sphere Packings, Lattices and Groups , 1990 .

[4]  Frédérique E. Oggier,et al.  Algebraic Number Theory and Code Design for Rayleigh Fading Channels , 2004, Found. Trends Commun. Inf. Theory.

[5]  Kannan Ramchandran,et al.  Generalized coset codes for distributed binning , 2005, IEEE Transactions on Information Theory.

[6]  Shlomo Shamai,et al.  Nested linear/Lattice codes for structured multiterminal binning , 2002, IEEE Trans. Inf. Theory.

[7]  Byung-Jae Kwak,et al.  LDPC Codes for the Gaussian Wiretap Channel , 2009, IEEE Transactions on Information Forensics and Security.

[8]  Renaud Coulangeon,et al.  Spherical designs and zeta functions of lattices , 2006 .

[9]  A. Robert Calderbank,et al.  Applications of LDPC Codes to the Wiretap Channel , 2004, IEEE Transactions on Information Theory.

[10]  Emina Soljanin,et al.  On Wiretap Networks II , 2007, 2007 IEEE International Symposium on Information Theory.

[11]  Lawrence H. Ozarow,et al.  Wire-tap channel II , 1984, AT&T Bell Lab. Tech. J..

[12]  J. Barros,et al.  LDPC codes for the Gaussian wiretap channel , 2009 .