Regularity Properties of L Ambiguities of Morphisms

We study the L ambiguity of morphisms of the free monoid. We define four basic ambiguity sets and establish their effective regularity in many cases. Decidability results concerning L codes are obtained as consequences.

[1]  Antonio Restivo,et al.  Star-Free Sets of Integers , 1986, Theor. Comput. Sci..

[2]  J. Berstel,et al.  Theory of codes , 1985 .

[3]  Arto Salomaa,et al.  Public-Key Cryptography , 1991, EATCS Monographs on Theoretical Computer Science.

[4]  Christiane Frougny,et al.  Linear Numeration Systems of Order Two , 1988, Inf. Comput..

[5]  Grzegorz Rozenberg,et al.  The Book of L , 1986, Springer Berlin Heidelberg.

[6]  Juha Honkala Bases and Ambiguity of Number Systems , 1984, Theor. Comput. Sci..

[7]  Arto Salomaa,et al.  Ambiguity and Decision Problems Concerning Number Systems , 1983, Inf. Control..

[8]  Andrzej Ehrenfeucht,et al.  Simplifications of Homomorphisms , 1978, Inf. Control..

[9]  Juha Honkala Unique representation in number systems and L codes , 1982, Discret. Appl. Math..

[10]  Juha Honkala A Decision Method for The Recognizability of Sets Defined by Number Systems , 1986, RAIRO Theor. Informatics Appl..

[11]  Juha Honkala,et al.  It is decidable whether or not a permutation-free morphism is an l code , 1987 .

[12]  Jean Berstel,et al.  Fibonacci Words — A Survey , 1986 .

[13]  Derick Wood,et al.  L Codes and Number Systems , 1983, Theor. Comput. Sci..

[14]  Derick Wood,et al.  Bounded Delay L Codes , 1991, Theor. Comput. Sci..