Certified Reduced Basis Methods for Parametrized Saddle Point Problems

We present reduced basis approximations and associated rigorous a posteriori error bounds for parametrized saddle point problems. First, we develop new a posteriori error estimates that, unlike earlier approaches, provide upper bounds for the errors in the approximations of the primal variable and the Lagrange multiplier separately. The proposed method is an application of Brezzi's theory for saddle point problems to the reduced basis context and exhibits significant advantages over existing methods. Second, based on an analysis of Brezzi's theory, we compare several options for the reduced basis approximation space from the perspective of approximation stability and computational cost. Finally, we introduce a new adaptive sampling procedure for saddle point problems constructing approximation spaces that are stable and, compared to earlier approaches, computationally much more efficient. The method is applied to a Stokes flow problem in a two-dimensional channel with a parametrized rectangular obstacle. ...

[1]  Gianluigi Rozza,et al.  Reduced basis approximation and a posteriori error estimation for the time-dependent viscous Burgers’ equation , 2009 .

[2]  Federico Negri,et al.  Reduced basis method for parametrized optimal control problems governed by PDEs , 2011 .

[3]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[4]  A. Quarteroni,et al.  Shape optimization for viscous flows by reduced basis methods and free‐form deformation , 2012 .

[5]  Yvon Maday,et al.  The Reduced Basis Element Method for Fluid Flows , 2006 .

[6]  Anthony T. Patera,et al.  A Posteriori Error Bounds for the Empirical Interpolation Method , 2010 .

[7]  A. Patera,et al.  A Successive Constraint Linear Optimization Method for Lower Bounds of Parametric Coercivity and Inf-Sup Stability Constants , 2007 .

[8]  A. Reusken,et al.  Numerical Methods for Two-phase Incompressible Flows , 2011 .

[9]  D. Rovas,et al.  A blackbox reduced-basis output bound method for noncoercive linear problems , 2002 .

[10]  D. Rovas,et al.  Output bounds for reduced-basis approximations of symmetric positive definite eigenvalue problems , 2000 .

[11]  Barbara I. Wohlmuth,et al.  A Reduced Basis Method for Parametrized Variational Inequalities , 2012, SIAM J. Numer. Anal..

[12]  Claudio Canuto,et al.  Reduced-Basis Approximation and A Posteriori Error Estimation for Saddle-Point Problems , 2011 .

[13]  A. Antoulas,et al.  A Survey of Model Reduction by Balanced Truncation and Some New Results , 2004 .

[14]  Jan S. Hesthaven,et al.  Certified Reduced Basis Methods and Output Bounds for the Harmonic Maxwell's Equations , 2010, SIAM J. Sci. Comput..

[15]  Y. Maday,et al.  Reduced Basis Techniques for Stochastic Problems , 2010, 1004.0357.

[16]  G. Gibson,et al.  Some Observations on J-R Curves , 1985 .

[17]  P. Stern,et al.  Automatic choice of global shape functions in structural analysis , 1978 .

[18]  A. Quarteroni,et al.  Numerical solution of parametrized Navier–Stokes equations by reduced basis methods , 2007 .

[19]  Ahmed K. Noor,et al.  Reduced Basis Technique for Nonlinear Analysis of Structures , 1980 .

[20]  A. Patera,et al.  A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD , 2012 .

[21]  Nguyen Ngoc Cuong,et al.  Certified Real-Time Solution of Parametrized Partial Differential Equations , 2005 .

[22]  Benjamin Rahn A Balanced Truncation Primer , 2001 .

[23]  Anthony T. Patera,et al.  A natural-norm Successive Constraint Method for inf-sup lower bounds , 2010 .

[24]  Howard A. Stone,et al.  ENGINEERING FLOWS IN SMALL DEVICES , 2004 .

[25]  B. Haasdonk,et al.  REDUCED BASIS METHOD FOR FINITE VOLUME APPROXIMATIONS OF PARAMETRIZED LINEAR EVOLUTION EQUATIONS , 2008 .

[26]  A. Patera,et al.  A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations , 2005 .

[27]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[28]  Claudio Canuto,et al.  A Posteriori Error Analysis of the Reduced Basis Method for Nonaffine Parametrized Nonlinear PDEs , 2009, SIAM J. Numer. Anal..

[29]  D. Rovas,et al.  Reliable Real-Time Solution of Parametrized Partial Differential Equations: Reduced-Basis Output Bound Methods , 2002 .

[30]  Karsten Urban,et al.  Reduced Basis Methods for Parameterized Partial Differential Equations with Stochastic Influences Using the Karhunen-Loève Expansion , 2013, SIAM/ASA J. Uncertain. Quantification.

[31]  Karen Willcox,et al.  Model Reduction for Large-Scale Systems with High-Dimensional Parametric Input Space , 2008, SIAM J. Sci. Comput..

[32]  A. Patera,et al.  Certified real‐time solution of the parametrized steady incompressible Navier–Stokes equations: rigorous reduced‐basis a posteriori error bounds , 2005 .

[33]  Timo Tonn,et al.  Comparison of the reduced-basis and POD a posteriori error estimators for an elliptic linear-quadratic optimal control problem , 2011 .

[34]  D. Sorensen,et al.  Approximation of large-scale dynamical systems: an overview , 2004 .

[35]  Stefan Volkwein,et al.  Model reduction techniques with a-posteriori error analysis for linear-quadratic optimal control problems , 2012 .

[36]  Z. Bai Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems , 2002 .

[37]  R. Freund Model reduction methods based on Krylov subspaces , 2003, Acta Numerica.

[38]  Gianluigi Rozza,et al.  Reduced basis method for multi-parameter-dependent steady Navier-Stokes equations: Applications to natural convection in a cavity , 2009, J. Comput. Phys..

[39]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[40]  N. Nguyen,et al.  REDUCED BASIS APPROXIMATION AND A POSTERIORI ERROR ESTIMATION FOR THE PARAMETRIZED UNSTEADY BOUSSINESQ EQUATIONS , 2011 .

[41]  Bartosz A Grzybowski,et al.  Microfluidic mixers: from microfabricated to self-assembling devices , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[42]  D. Sorensen,et al.  A Survey of Model Reduction Methods for Large-Scale Systems , 2000 .

[43]  A. Patera,et al.  Reduced-basis approximation of the viscous Burgers equation: rigorous a posteriori error bounds , 2003 .

[44]  Mark Kärcher,et al.  Reduced basis a posteriori error bounds for parametrized linear-quadratic elliptic optimal control problems , 2011 .

[45]  Wolfgang Dahmen,et al.  Convergence Rates for Greedy Algorithms in Reduced Basis Methods , 2010, SIAM J. Math. Anal..

[46]  Benjamin S. Kirk,et al.  Library for Parallel Adaptive Mesh Refinement / Coarsening Simulations , 2006 .

[47]  Clarence W. Rowley,et al.  Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition , 2005, Int. J. Bifurc. Chaos.

[48]  J. Tinsley Oden,et al.  PENALTY-FINITE ELEMENT METHODS FOR THE ANALYSIS OF STOKESIAN FLOWS* , 1982 .

[49]  J. Peraire,et al.  Balanced Model Reduction via the Proper Orthogonal Decomposition , 2002 .

[50]  J. Guermond,et al.  Theory and practice of finite elements , 2004 .

[51]  N. Nguyen,et al.  An ‘empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations , 2004 .

[52]  R. Temam,et al.  Navier-Stokes equations: theory and numerical analysis: R. Teman North-Holland, Amsterdam and New York. 1977. 454 pp. US $45.00 , 1978 .

[53]  Janet S. Peterson,et al.  The Reduced Basis Method for Incompressible Viscous Flow Calculations , 1989 .

[54]  A. Chatterjee An introduction to the proper orthogonal decomposition , 2000 .

[55]  Anthony T. Patera,et al.  Global a priori convergence theory for reduced-basis approximations of single-parameter symmetric coercive elliptic partial differential equations , 2002 .

[56]  Ludmil T. Zikatanov,et al.  Some observations on Babu\vs}ka and Brezzi theories , 2003, Numerische Mathematik.

[57]  M. Bercovier Perturbation of mixed variational problems. Application to mixed finite element methods , 1978 .

[58]  Werner C. Rheinboldt,et al.  On the Error Behavior of the Reduced Basis Technique for Nonlinear Finite Element Approximations , 1983 .

[59]  G. Rozza,et al.  On the stability of the reduced basis method for Stokes equations in parametrized domains , 2007 .

[60]  N. Nguyen,et al.  EFFICIENT REDUCED-BASIS TREATMENT OF NONAFFINE AND NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS , 2007 .

[61]  M. Gunzburger,et al.  Reduced-order modeling of time-dependent PDEs with multiple parameters in the boundary data , 2007 .

[62]  A. Quarteroni,et al.  Model reduction techniques for fast blood flow simulation in parametrized geometries , 2012, International journal for numerical methods in biomedical engineering.

[63]  Gianluigi Rozza,et al.  Reduced basis methods for Stokes equations in domains with non-affine parameter dependence , 2009 .

[64]  Graham F. Carey,et al.  Penalty approximation of stokes flow , 1982 .

[65]  I. Babuska Error-bounds for finite element method , 1971 .

[66]  J. N. Reddy,et al.  On penalty function methods in the finite‐element analysis of flow problems , 1982 .

[67]  Franco Brezzi Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods (Springer Series in Computational Mathematics) , 1991 .

[68]  A. Patera,et al.  Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations , 2007 .

[69]  Yvon Maday,et al.  A Reduced-Basis Element Method , 2002, J. Sci. Comput..

[70]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .

[71]  D. Rovas,et al.  Reduced--Basis Output Bound Methods for Parametrized Partial Differential Equations , 2002 .

[72]  Anthony T. Patera,et al.  A Certified Reduced Basis Method for the Fokker--Planck Equation of Dilute Polymeric Fluids: FENE Dumbbells in Extensional Flow , 2010, SIAM J. Sci. Comput..

[73]  P. Hood,et al.  A numerical solution of the Navier-Stokes equations using the finite element technique , 1973 .

[74]  Boris Lohmann,et al.  Model order reduction and error estimation with an application to the parameter-dependent eddy current equation , 2011 .

[75]  G. Tallini,et al.  ON THE EXISTENCE OF , 1996 .

[76]  Luca Dedè,et al.  Reduced Basis Method and A Posteriori Error Estimation for Parametrized Linear-Quadratic Optimal Control Problems , 2010, SIAM J. Sci. Comput..

[77]  S. Ravindran,et al.  A Reduced Basis Method for Control Problems Governed by PDEs , 1998 .

[78]  John W. Peterson,et al.  A high-performance parallel implementation of the certified reduced basis method , 2011 .

[79]  Wolfgang Dahmen,et al.  DOUBLE GREEDY ALGORITHMS: REDUCED BASIS METHODS FOR TRANSPORT DOMINATED PROBLEMS ∗ , 2013, 1302.5072.

[80]  Karen Veroy,et al.  Reduced Basis A Posteriori Error Bounds for the Stokes Equations in Parametrized Domains: A Penalty Approach , 2010 .

[81]  T. A. Porsching,et al.  Estimation of the error in the reduced basis method solution of nonlinear equations , 1985 .

[82]  Max Gunzburger,et al.  Finite Element Methods for Viscous Incompressible Flows: A Guide to Theory, Practice, and Algorithms , 1989 .

[83]  D. Rovas,et al.  A Posteriori Error Bounds for Reduced-Basis Approximation of Parametrized Noncoercive and Nonlinear Elliptic Partial Differential Equations , 2003 .

[84]  Anthony T. Patera,et al.  A Static condensation Reduced Basis Element method: approximation and a posteriori error estimation , 2013 .

[85]  Wing Kam Liu,et al.  Finite Element Analysis of Incompressible Viscous Flows by the Penalty Function Formulation , 1979 .

[86]  M. Grepl Reduced-basis approximation a posteriori error estimation for parabolic partial differential equations , 2005 .

[87]  Peter Benner,et al.  Numerical Linear Algebra for Model Reduction in Control and Simulation , 2006 .

[88]  Juan C. Heinrich,et al.  The penalty method for the Navier-Stokes equations , 1995 .

[89]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[90]  Anthony T. Patera,et al.  "Natural norm" a posteriori error estimators for reduced basis approximations , 2006, J. Comput. Phys..

[91]  S. Quake,et al.  Microfluidics: Fluid physics at the nanoliter scale , 2005 .

[92]  T. A. Porsching,et al.  The reduced basis method for initial value problems , 1987 .

[93]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.