Comparative methods for the analysis of gene-expression evolution: an example using yeast functional genomic data.

Understanding the evolution of gene function is a primary challenge of modern evolutionary biology. Despite an expanding database from genomic and developmental studies, we are lacking quantitative methods for analyzing the evolution of some important measures of gene function, such as gene-expression patterns. Here, we introduce phylogenetic comparative methods to compare different models of gene-expression evolution in a maximum-likelihood framework. We find that expression of duplicated genes has evolved according to a nonphylogenetic model, where closely related genes are no more likely than more distantly related genes to share common expression patterns. These results are consistent with previous studies that found rapid evolution of gene expression during the history of yeast. The comparative methods presented here are general enough to test a wide range of evolutionary hypotheses using genomic-scale data from any organism.

[1]  R. Britten,et al.  Gene regulation for higher cells: a theory. , 1969, Science.

[2]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[3]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[4]  J. Felsenstein Maximum-likelihood estimation of evolutionary trees from continuous characters. , 1973, American journal of human genetics.

[5]  M. King,et al.  Evolution at two levels in humans and chimpanzees. , 1975, Science.

[6]  P. Lancaster,et al.  Problems of control and information theory (Hungary) , 1980 .

[7]  E. Mayr,et al.  The Evolutionary synthesis : perspectives on the unification of biology , 1980 .

[8]  J. Felsenstein,et al.  EVOLUTIONARY TREES FROM GENE FREQUENCIES AND QUANTITATIVE CHARACTERS: FINDING MAXIMUM LIKELIHOOD ESTIMATES , 1981, Evolution; international journal of organic evolution.

[9]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[10]  J. Felsenstein Phylogenies and quantitative characters , 1988 .

[11]  T. Garland,et al.  PHYLOGENETIC ANALYSES OF THE CORRELATED EVOLUTION OF CONTINUOUS CHARACTERS: A SIMULATION STUDY , 1991, Evolution; international journal of organic evolution.

[12]  Rainer Fuchs,et al.  CLUSTAL V: improved software for multiple sequence alignment , 1992, Comput. Appl. Biosci..

[13]  M. Nei,et al.  Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. , 1993, Molecular biology and evolution.

[14]  A. Hughes,et al.  Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. , 1993, Molecular biology and evolution.

[15]  A. Hughes The evolution of functionally novel proteins after gene duplication , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[16]  M. Pagel Detecting correlated evolution on phylogenies: a general method for the comparative analysis of discrete characters , 1994, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[17]  Ramón Díaz-Uriarte,et al.  TESTING HYPOTHESES OF CORRELATED EVOLUTION USING PHYLOGENETICALLY INDEPENDENT CONTRASTS: SENSITIVITY TO DEVIATIONS FROM BROWNIAN MOTION , 1996 .

[18]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.

[19]  B. Rannala,et al.  Bayesian phylogenetic inference using DNA sequences: a Markov Chain Monte Carlo Method. , 1997, Molecular biology and evolution.

[20]  D. Botstein,et al.  The transcriptional program of sporulation in budding yeast. , 1998, Science.

[21]  V. Vieland,et al.  Statistical Evidence: A Likelihood Paradigm , 1998 .

[22]  David Posada,et al.  MODELTEST: testing the model of DNA substitution , 1998, Bioinform..

[23]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[24]  D. Schluter,et al.  Fitting macroevolutionary models to phylogenies: an example using vertebrate body sizes , 1998 .

[25]  M. Pagel The Maximum Likelihood Approach to Reconstructing Ancestral Character States of Discrete Characters on Phylogenies , 1999 .

[26]  D. Schluter,et al.  Using Phylogenies to Test Macroevolutionary Hypotheses of Trait Evolution in Cranes (Gruinae) , 1999, The American Naturalist.

[27]  D. Botstein,et al.  Systematic changes in gene expression patterns following adaptive evolution in yeast. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  B. Rost Twilight zone of protein sequence alignments. , 1999, Protein engineering.

[29]  A. Force,et al.  Preservation of duplicate genes by complementary, degenerative mutations. , 1999, Genetics.

[30]  D. Botstein,et al.  Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[31]  A. Wagner,et al.  Decoupled evolution of coding region and mRNA expression patterns after gene duplication: implications for the neutralist-selectionist debate. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[32]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[33]  N. Reid,et al.  Likelihood , 1993 .

[34]  V. Laudet,et al.  Evolutionary rates of duplicate genes in fish and mammals. , 2001, Molecular biology and evolution.

[35]  A. Meyer,et al.  The Ghost of Selection Past: Rates of Evolution and Functional Divergence of Anciently Duplicated Genes , 2001, Journal of Molecular Evolution.

[36]  E. Koonin,et al.  Selection in the evolution of gene duplications , 2002, Genome Biology.

[37]  P. Lewis A likelihood approach to estimating phylogeny from discrete morphological character data. , 2001, Systematic biology.

[38]  Z. Gu,et al.  Extent of gene duplication in the genomes of Drosophila, nematode, and yeast. , 2002, Molecular biology and evolution.

[39]  Takeshi Kawashima,et al.  A cDNA resource from the basal chordate Ciona intestinalis , 2002, Genesis.

[40]  C. Murren Phenotypic integration in plants , 2002 .

[41]  W. Fontana Modelling 'evo-devo' with RNA. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[42]  D. Nicolae,et al.  Rapid divergence in expression between duplicate genes inferred from microarray data. , 2002, Trends in genetics : TIG.

[43]  Michael Levine,et al.  Genome-wide identification of tissue-specific enhancers in the Ciona tadpole , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[44]  DETECTING CORRELATION BETWEEN CHARACTERS IN A COMPARATIVE ANALYSIS WITH UNCERTAIN PHYLOGENY , 2003, Evolution; international journal of organic evolution.

[45]  Z. Gu,et al.  Different evolutionary patterns between young duplicate genes in the human genome , 2003, Genome Biology.

[46]  M. Levine,et al.  A genomewide survey of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[47]  Matthew W. Hahn,et al.  The evolution of transcriptional regulation in eukaryotes. , 2003, Molecular biology and evolution.

[48]  M. Levine,et al.  A genomewide survey of developmentally relevant genes in Ciona intestinalis , 2003, Development Genes and Evolution.

[49]  D. Stern,et al.  Regulatory evolution of shavenbaby/ovo underlies multiple cases of morphological parallelism , 2003, Nature.

[50]  S. Carroll,et al.  Genetic mechanisms and constraints governing the evolution of correlated traits in drosophilid flies , 2003, Nature.

[51]  Wen-Hsiung Li,et al.  Divergence in the spatial pattern of gene expression between human duplicate genes. , 2003, Genome research.

[52]  Michael P. Cummings,et al.  PAUP* [Phylogenetic Analysis Using Parsimony (and Other Methods)] , 2004 .

[53]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[54]  X. Gu Statistical Framework for Phylogenomic Analysis of Gene Family Expression Profiles , 2004, Genetics.

[55]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[56]  B. Rannala,et al.  Probability distribution of molecular evolutionary trees: A new method of phylogenetic inference , 1996, Journal of Molecular Evolution.