Global–local fisher discriminant approach for face recognition

Abstract In this paper, we proposed a linear discriminant approach, namely global–local Fisher discriminant analysis (GLFDA) that explicitly considers both the local and global discriminant structures embedded in data. To be specific, GLFDA constructs two graphs to, respectively, model the global and local discriminant structures and then incorporates discriminant structures and local intrinsic structure, which characterizes the within-class compactness, into the objective function for dimensionality reduction. Thus, GLFDA well encodes the discriminant information, especially the local discriminant information of data. Experimental results on AR, YALE, and UMIST databases show the effectiveness of the proposed algorithm.

[1]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  David J. Kriegman,et al.  The yale face database , 1997 .

[3]  Yong Xu,et al.  One improvement to two-dimensional locality preserving projection method for use with face recognition , 2009, Neurocomputing.

[4]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[5]  Kun Zhou,et al.  Locality Sensitive Discriminant Analysis , 2007, IJCAI.

[6]  David Zhang,et al.  Local Linear Discriminant Analysis Framework Using Sample Neighbors , 2011, IEEE Transactions on Neural Networks.

[7]  Hwann-Tzong Chen,et al.  Local discriminant embedding and its variants , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[8]  Jiawei Han,et al.  Semi-supervised Discriminant Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[9]  Jieping Ye,et al.  Integrating Global and Local Structures: A Least Squares Framework for Dimensionality Reduction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[10]  Jing-Yu Yang,et al.  Face recognition using fuzzy maximum scatter discriminant analysis , 2012, Neural Computing and Applications.

[11]  Jian Yang,et al.  LPP solution schemes for use with face recognition , 2010, Pattern Recognit..

[12]  Xuelong Li,et al.  Patch Alignment for Dimensionality Reduction , 2009, IEEE Transactions on Knowledge and Data Engineering.

[13]  Masashi Sugiyama,et al.  Dimensionality Reduction of Multimodal Labeled Data by Local Fisher Discriminant Analysis , 2007, J. Mach. Learn. Res..

[14]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[15]  Jingjing Liu,et al.  Enhanced fisher discriminant criterion for image recognition , 2012, Pattern Recognit..

[16]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Hui Xu,et al.  Two-dimensional supervised local similarity and diversity projection , 2010, Pattern Recognit..

[18]  Masashi Sugiyama,et al.  Local Fisher discriminant analysis for supervised dimensionality reduction , 2006, ICML.

[19]  Shuang Wang,et al.  Fast Fisher Sparsity Preserving Projections , 2012, Neural Computing and Applications.