Analysis of a fully discrete local discontinuous Galerkin method for time-fractional fourth-order problems☆

Abstract In this paper, we propose and analyze a fully discrete local discontinuous Galerkin (LDG) finite element method for time-fractional fourth-order problems. The method is based on a finite difference scheme in time and local discontinuous Galerkin methods in space. Stability is ensured by a careful choice of interface numerical fluxes. We prove that our scheme is unconditional stable and convergent. Numerical examples are shown to illustrate the efficiency and accuracy of our scheme.

[1]  Chi-Wang Shu,et al.  Local discontinuous Galerkin methods for nonlinear Schrödinger equations , 2005 .

[2]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[3]  R. Metzler,et al.  Fractional model equation for anomalous diffusion , 1994 .

[4]  Ahmet Yildirim,et al.  Analytical approach to fractional partial differential equations in fluid mechanics by means of the homotopy perturbation method , 2010 .

[5]  Dumitru Baleanu,et al.  A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives , 2010 .

[6]  Chi-Wang Shu,et al.  Local Discontinuous Galerkin Methods for Partial Differential Equations with Higher Order Derivatives , 2002, J. Sci. Comput..

[7]  Fawang Liu,et al.  An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation , 2010 .

[8]  G. Fix,et al.  Least squares finite-element solution of a fractional order two-point boundary value problem , 2004 .

[9]  Fawang Liu,et al.  Finite element approximation for a modified anomalous subdiffusion equation , 2011 .

[10]  Yinnian He,et al.  The local discontinuous Galerkin finite element method for Burger's equation , 2011, Math. Comput. Model..

[11]  Ilaria Perugia,et al.  Superconvergence of the Local Discontinuous Galerkin Method for Elliptic Problems on Cartesian Grids , 2001, SIAM J. Numer. Anal..

[12]  Fawang Liu,et al.  New Solution and Analytical Techniques of the Implicit Numerical Method for the Anomalous Subdiffusion Equation , 2008, SIAM J. Numer. Anal..

[13]  Xian-Feng Zhou,et al.  Mittag–Leffler stability of nonlinear fractional neutral singular systems , 2012 .

[14]  Fawang Liu,et al.  Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation , 2008, Appl. Math. Comput..

[15]  Weihua Deng,et al.  Finite Element Method for the Space and Time Fractional Fokker-Planck Equation , 2008, SIAM J. Numer. Anal..

[16]  Chi-Wang Shu,et al.  The Local Discontinuous Galerkin Method for Time-Dependent Convection-Diffusion Systems , 1998 .

[17]  I. Turner,et al.  Time fractional advection-dispersion equation , 2003 .

[18]  Yan Xu,et al.  A Local Discontinuous Galerkin Method for the Camassa-Holm Equation , 2008, SIAM J. Numer. Anal..

[19]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[20]  Fawang Liu,et al.  An implicit RBF meshless approach for time fractional diffusion equations , 2011 .

[21]  Shaher Momani,et al.  Analytic and approximate solutions of the space- and time-fractional telegraph equations , 2005, Appl. Math. Comput..

[22]  Ahmet Yildirim,et al.  He's homotopy perturbation method for solving the space- and time-fractional telegraph equations , 2010, Int. J. Comput. Math..

[23]  Fawang Liu,et al.  Numerical techniques for the variable order time fractional diffusion equation , 2012, Appl. Math. Comput..

[24]  Dumitru Baleanu,et al.  Generalized variational calculus in terms of multi-parameters fractional derivatives , 2011 .

[25]  Shaher Momani,et al.  An explicit and numerical solutions of the fractional KdV equation , 2005, Math. Comput. Simul..

[26]  Fawang Liu,et al.  Stability and convergence of the difference methods for the space-time fractional advection-diffusion equation , 2007, Appl. Math. Comput..

[27]  Jingtang Ma,et al.  High-order finite element methods for time-fractional partial differential equations , 2011, J. Comput. Appl. Math..

[28]  Hüseyin Koçak,et al.  Homotopy perturbation method for solving the space–time fractional advection–dispersion equation , 2009 .

[29]  W. Wyss The fractional diffusion equation , 1986 .

[30]  Shaher Momani,et al.  The variational iteration method: An efficient scheme for handling fractional partial differential equations in fluid mechanics , 2009, Comput. Math. Appl..

[31]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..