Bifurcation and segregation in quadratic two-populations mean field games systems

We search for non-constant normalized solutions to the semilinear elliptic system \begin{eqnarray*} \begin{cases} - \nu \Delta v_i + g_i(v_j^2) v_i = \lambda_i v_i,\quad v_i>0 & \text{in }\Omega \\ \partial_n v_i = 0 & \text{on }\partial \Omega\\ \int_\Omega v_i^2\,{\rm d}x = 1, & 1\leq i,j\leq 2, \quad j\neq i, \end{cases} \end{eqnarray*}where ν > 0, Ω ⊂ R N is smooth and bounded, the functions g i are positive and increasing, and both the functions v i and the parameters λ i are unknown. This system is obtained, via the Hopf−Cole transformation, from a two-populations ergodic Mean Field Games system, which describes Nash equilibria in differential games with identical players. In these models, each population consists of a very large number of indistinguishable rational agents, aiming at minimizing some long-time average criterion. Firstly, we discuss existence of nontrivial solutions, using variational methods when g i ( s ) = s , and bifurcation ones in the general case; secondly, for selected families of nontrivial solutions, we address the appearing of segregation in the vanishing viscosity limit, i.e. \begin{eqnarray*} \int_{\Omega} v_1 v_2 \to 0 \qquad \text{as }\nu\to0. \end{eqnarray*}∫Ωv1v2→0 asν→0.

[1]  P. Lions,et al.  Mean field games , 2007 .

[2]  Hugo Tavares,et al.  Uniform Hölder Bounds for Nonlinear Schrödinger Systems with Strong Competition , 2008, 0810.5537.

[3]  Veronica Quitalo A Free Boundary Problem Arising from Segregation of Populations with High Competition , 2012, 1210.6711.

[4]  A. Ambrosetti,et al.  A primer of nonlinear analysis , 1993 .

[5]  Paul H. Rabinowitz,et al.  Some global results for nonlinear eigenvalue problems , 1971 .

[6]  Benedetta Noris,et al.  Stable solitary waves with prescribed $L^2$-mass for the cubic Schr\"odinger system with trapping potentials , 2014, 1405.5549.

[7]  Marco Cirant,et al.  Multi-population Mean Field Games systems with Neumann boundary conditions , 2015 .

[8]  Juncheng Wei,et al.  Asymptotic behaviour of solutions of planar elliptic systems with strong competition , 2008 .

[9]  Ermal Feleqi The Derivation of Ergodic Mean Field Game Equations for Several Populations of Players , 2013, Dyn. Games Appl..

[10]  Tai-Chia Lin,et al.  On Phase-Separation Models: Asymptotics and Qualitative Properties , 2013 .

[11]  P. Lions,et al.  Jeux à champ moyen. I – Le cas stationnaire , 2006 .

[12]  T. Bartsch,et al.  Normalized solutions for a system of coupled cubic Schr\"odinger equations on $\mathbb{R}^3$ , 2015, 1506.02262.

[13]  Susanna Terracini,et al.  Nehari's problem and competing species systems , 2002 .

[14]  S. Terracini,et al.  On Entire Solutions of an Elliptic System Modeling Phase Separations , 2012, 1204.1038.

[15]  Jean-Michel Roquejoffre,et al.  Uniform Hölder Estimates in a Class of Elliptic Systems and Applications to Singular Limits in Models for Diffusion Flames , 2007 .

[16]  P. Lions,et al.  Jeux à champ moyen. II – Horizon fini et contrôle optimal , 2006 .

[17]  Edward Norman Dancer,et al.  Uniform Hölder estimate for singularly perturbed parabolic systems of Bose–Einstein condensates and competing species , 2011 .

[18]  Nicola Soave,et al.  Uniform Bounds for Strongly Competing Systems: The Optimal Lipschitz Case , 2014, 1407.6674.

[19]  Susanna Terracini,et al.  Asymptotic estimates for the spatial segregation of competitive systems , 2005 .

[20]  M. Bardi,et al.  Mean field games models of segregation , 2016, 1607.04453.

[21]  Minyi Huang,et al.  Large-Population Cost-Coupled LQG Problems With Nonuniform Agents: Individual-Mass Behavior and Decentralized $\varepsilon$-Nash Equilibria , 2007, IEEE Transactions on Automatic Control.

[22]  T. Bartsch,et al.  Normalized solutions for a system of coupled cubic Schrödinger equations on R3 , 2016 .

[23]  F. Lin,et al.  Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries , 2008 .

[24]  S. Terracini,et al.  H\"older bounds and regularity of emerging free boundaries for strongly competing Schr\"odinger equations with nontrivial grouping , 2015, 1506.00800.

[25]  Antoine Henrot,et al.  Extremum Problems for Eigenvalues of Elliptic Operators , 2006 .

[26]  Susanna Terracini,et al.  Uniqueness and least energy property for solutions to strongly competing systems , 2006 .

[27]  M. Crandall,et al.  Bifurcation from simple eigenvalues , 1971 .

[28]  Benedetta Noris,et al.  Existence and orbital stability of the ground states with prescribed mass for the $L^2$-critical and supercritical NLS on bounded domains , 2013, 1307.3981.

[29]  T. Bartsch,et al.  Normalized solutions for nonlinear Schrödinger systems , 2015, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[30]  S. Terracini,et al.  Convergence of minimax and continuation of critical points for singularly perturbed systems , 2009, 0910.5317.

[31]  Peter E. Caines,et al.  Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle , 2006, Commun. Inf. Syst..

[32]  Shu-Ming Chang,et al.  Segregated nodal domains of two-dimensional multispecies Bose-Einstein condensates , 2004 .

[33]  Marie-Therese Wolfram,et al.  On a mean field game approach modeling congestion and aversion in pedestrian crowds , 2011 .