A collocation method for real-time walking pattern generation

This paper presents a new real-time walking pattern generator that calculates center of mass trajectories from footstep locations. Key features are the calculation of reference torque patterns by quadratic programming and the solution of the equations of motion by spline collocation. Fast real-time planning is combined with offline optimisation of free parameters based on a comprehensive simulation of the closed loop system to automatically generate optimally tuned walking controllers. The effectiveness of the proposed method is shown using a dynamics simulation of the robot JOHNNIE.

[1]  Jong H. Park,et al.  Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[2]  Friedrich Pfeiffer,et al.  Sensors and control concept of a biped robot , 2004, IEEE Transactions on Industrial Electronics.

[3]  Kazuhito Yokoi,et al.  Biped walking pattern generation by using preview control of zero-moment point , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[4]  Miomir Vukobratović,et al.  Biped Locomotion: Dynamics, Stability, Control and Application , 1990 .

[5]  Shuuji Kajita,et al.  Biped walking on a low friction floor , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[6]  J. Furusho,et al.  A Theoretically Motivated Reduced Order Model for the Control of Dynamic Biped Locomotion , 1987 .

[7]  Guy Bessonnet,et al.  Optimal Gait Synthesis of a Seven-Link Planar Biped , 2004, Int. J. Robotics Res..

[8]  T. Ishida Development of a small biped entertainment robot QRIO , 2004, Micro-Nanomechatronics and Human Science, 2004 and The Fourth Symposium Micro-Nanomechatronics for Information-Based Society, 2004..

[9]  L. Shampine,et al.  A collocation method for boundary value problems , 1972 .

[10]  Kenichi Ogawa,et al.  Honda humanoid robots development , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Shuuji Kajita,et al.  A Biped Pattern Generation Allowing Immediate Modification of Foot Placement in Real-time , 2006, 2006 6th IEEE-RAS International Conference on Humanoid Robots.

[12]  Friedrich Pfeiffer,et al.  Modular joint design for performance enhanced humanoid robot LOLA , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[13]  Günther Schmidt,et al.  Synthesis of walking primitive databases for biped robots in 3D-environments , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[14]  Friedrich Pfeiffer,et al.  Modeling and Simulation of a Biped Robot , 2006 .

[15]  Friedrich Pfeiffer,et al.  Dynamics simulation for a biped robot: modeling and experimental verification , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[16]  Masayuki Inaba,et al.  Online 3D vision, motion planning and bipedal locomotion control coupling system of humanoid robot: H7 , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[17]  Masayuki Inaba,et al.  A Fast Dynamically Equilibrated Walking Trajectory Generation Method of Humanoid Robot , 2002, Auton. Robots.

[18]  Friedrich Pfeiffer,et al.  Sensor and Control Aspects of Biped Robot "JOHNNIE" , 2004, Int. J. Humanoid Robotics.

[19]  Friedrich Pfeiffer,et al.  Optimization based gait pattern generation for a biped robot , 2005, 5th IEEE-RAS International Conference on Humanoid Robots, 2005..

[20]  P. GILMOREy,et al.  Implicit Filtering and Optimal Design Problems , 1994 .

[21]  Fumio Kanehiro,et al.  Humanoid robot HRP-2 , 2008, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[22]  다케나카도루,et al.  Controller of legged mobile robot , 2003 .