Integrating human omics data to prioritize candidate genes

[1]  R. Jiang,et al.  Walking on a Tissue-Specific Disease-Protein-Complex Heterogeneous Network for the Discovery of Disease-Related Protein Complexes , 2013, BioMed research international.

[2]  R. Piro,et al.  Computational approaches to disease‐gene prediction: rationale, classification and successes , 2012, The FEBS journal.

[3]  Rui Jiang,et al.  Constructing human phenome-interactome networks for the prioritization of candidate genes , 2012 .

[4]  Rui Jiang,et al.  Constructing a gene semantic similarity network for the inference of disease genes , 2011, BMC Systems Biology.

[5]  Tao Jiang,et al.  Uncover disease genes by maximizing information flow in the phenome–interactome network , 2011, Bioinform..

[6]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[7]  Rui Jiang,et al.  Integrating multiple protein-protein interaction networks to prioritize disease genes: a Bayesian regression approach , 2011, BMC Bioinformatics.

[8]  Yong Chen,et al.  DomainRBF: a Bayesian regression approach to the prioritization of candidate domains for complex diseases , 2011, BMC Systems Biology.

[9]  P. Costanzo,et al.  Erectile dysfunction, obesity, insulin resistance, and their relationship with testosterone levels in eugonadal patients in an andrology clinic setting. , 2010, Journal of andrology.

[10]  Jagdish Chandra Patra,et al.  Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network , 2010, Bioinform..

[11]  D. Nomura,et al.  Monoacylglycerol Lipase Regulates a Fatty Acid Network that Promotes Cancer Pathogenesis , 2010, Cell.

[12]  Roded Sharan,et al.  Associating Genes and Protein Complexes with Disease via Network Propagation , 2010, PLoS Comput. Biol..

[13]  S. O’Rahilly,et al.  Human genetics illuminates the paths to metabolic disease , 2009, Nature.

[14]  Y. Ohashi,et al.  Age-Associated Increase in Abdominal Obesity and Insulin Resistance, and Usefulness of AHA/NHLBI Definition of Metabolic Syndrome for Predicting Cardiovascular Disease in Japanese Elderly with Type 2 Diabetes Mellitus , 2009, Gerontology.

[15]  E. Schadt Molecular networks as sensors and drivers of common human diseases , 2009, Nature.

[16]  M. During,et al.  Molecular therapy of obesity and diabetes by a physiological autoregulatory approach , 2009, Nature Medicine.

[17]  Barbara Heude,et al.  Genome-wide association study for early-onset and morbid adult obesity identifies three new risk loci in European populations , 2009, Nature Genetics.

[18]  Robert D. Finn,et al.  InterPro: the integrative protein signature database , 2008, Nucleic Acids Res..

[19]  Ellen Kampman,et al.  Genome-wide association yields new sequence variants at seven loci that associate with measures of obesity , 2009, Nature Genetics.

[20]  Christian Gieger,et al.  Six new loci associated with body mass index highlight a neuronal influence on body weight regulation , 2009, Nature Genetics.

[21]  Qifang Liu,et al.  Align human interactome with phenome to identify causative genes and networks underlying disease families , 2009, Bioinform..

[22]  Vasyl Pihur,et al.  RankAggreg, an R package for weighted rank aggregation , 2009, BMC Bioinformatics.

[23]  Damian Smedley,et al.  BioMart – biological queries made easy , 2009, BMC Genomics.

[24]  Michael Q. Zhang,et al.  Network-based global inference of human disease genes , 2008, Molecular systems biology.

[25]  H. Stefánsson,et al.  Genetics of gene expression and its effect on disease , 2008, Nature.

[26]  D. Kell BMC Medical Genomics , 2008 .

[27]  G. Wagner,et al.  The road to modularity , 2007, Nature Reviews Genetics.

[28]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[29]  R. Nieto-Martínez,et al.  Metabolic Syndrome: From Global Epidemiology to Individualized Medicine , 2007, Clinical pharmacology and therapeutics.

[30]  Alejandro A. Schäffer,et al.  Improved BLAST searches using longer words for protein seeding , 2007, Bioinform..

[31]  A. Barabasi,et al.  Network medicine--from obesity to the "diseasome". , 2007, The New England journal of medicine.

[32]  Jason U Tilan,et al.  Neuropeptide Y acts directly in the periphery on fat tissue and mediates stress-induced obesity and metabolic syndrome , 2007, Nature Medicine.

[33]  A. Barabasi,et al.  The human disease network , 2007, Proceedings of the National Academy of Sciences.

[34]  K. Rother Diabetes treatment--bridging the divide. , 2007, The New England journal of medicine.

[35]  Philip S. Yu,et al.  A new method to measure the semantic similarity of GO terms , 2007, Bioinform..

[36]  V. McKusick Mendelian Inheritance in Man and Its Online Version, OMIM , 2007, The American Journal of Human Genetics.

[37]  Karen L. Mohlke,et al.  Data and text mining A computational system to select candidate genes for complex human traits , 2007 .

[38]  Pall I. Olason,et al.  A human phenome-interactome network of protein complexes implicated in genetic disorders , 2007, Nature Biotechnology.

[39]  T. Hansen,et al.  Variants in the 5′ region of the neuropeptide Y receptor Y2 gene (NPY2R) are associated with obesity in 5,971 white subjects , 2006, Diabetologia.

[40]  Yi Zhang,et al.  The role of leptin in leptin resistance and obesity , 2006, Physiology & Behavior.

[41]  A. Barabasi,et al.  A Protein–Protein Interaction Network for Human Inherited Ataxias and Disorders of Purkinje Cell Degeneration , 2006, Cell.

[42]  Bassem A. Hassan,et al.  Gene prioritization through genomic data fusion , 2006, Nature Biotechnology.

[43]  G. Vriend,et al.  A text-mining analysis of the human phenome , 2006, European Journal of Human Genetics.

[44]  K. N. Chandrika,et al.  Analysis of the human protein interactome and comparison with yeast, worm and fly interaction datasets , 2006, Nature Genetics.

[45]  G. Reaven Insulin resistance, the insulin resistance syndrome, and cardiovascular disease. , 2005, Panminerva medica.

[46]  Bart De Moor,et al.  TOUCAN 2: the all-inclusive open source workbench for regulatory sequence analysis , 2005, Nucleic Acids Res..

[47]  M. Lisanti,et al.  A biphasic response of hepatobiliary cholesterol metabolism to dietary fat at the onset of obesity in the mouse , 2005, Hepatology.

[48]  Alan R. Powell,et al.  Integration of text- and data-mining using ontologies successfully selects disease gene candidates , 2005, Nucleic acids research.

[49]  Doron Lancet,et al.  GeneTide—Terra Incognita Discovery Endeavor: a new transcriptome focused member of the GeneCards/GeneNote suite of databases , 2004, Nucleic Acids Res..

[50]  Eric Altermann,et al.  PathwayVoyager: pathway mapping using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database , 2005, BMC Genomics.

[51]  David J. Porteous,et al.  Speeding disease gene discovery by sequence based candidate prioritization , 2005, BMC Bioinformatics.

[52]  D. Mueller E3 ubiquitin ligases as T cell anergy factors , 2004, Nature Immunology.

[53]  H. Brunner,et al.  From syndrome families to functional genomics , 2004, Nature Reviews Genetics.

[54]  C. Ouzounis,et al.  Genome-wide identification of genes likely to be involved in human genetic disease. , 2004, Nucleic acids research.

[55]  S. Batalov,et al.  A gene atlas of the mouse and human protein-encoding transcriptomes. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[56]  R. Tibshirani,et al.  Least angle regression , 2004, math/0406456.

[57]  Frances S. Turner,et al.  POCUS: mining genomic sequence annotation to predict disease genes , 2003, Genome Biology.

[58]  Hanno Steen,et al.  Development of human protein reference database as an initial platform for approaching systems biology in humans. , 2003, Genome research.

[59]  R. Marcus,et al.  Five weeks of insulin-like growth factor-I treatment does not alter glucose kinetics or insulin sensitivity during a hyperglycemic clamp in older women. , 2003, Metabolism: clinical and experimental.

[60]  T. Tomita Amylin in pancreatic islets and pancreatic endocrine neoplasms , 2003, Pathology international.

[61]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[62]  D. Botstein,et al.  Discovering genotypes underlying human phenotypes: past successes for mendelian disease, future approaches for complex disease , 2003, Nature Genetics.

[63]  Alexander E. Kel,et al.  TRANSFAC®: transcriptional regulation, from patterns to profiles , 2003, Nucleic Acids Res..

[64]  Jan Freudenberg,et al.  A similarity-based method for genome-wide prediction of disease-relevant human genes , 2002, ECCB.

[65]  Martin Olbrot,et al.  Identification of β-cell-specific insulin gene transcription factor RIPE3b1 as mammalian MafA , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[66]  P. Bork,et al.  Association of genes to genetically inherited diseases using data mining , 2002, Nature Genetics.

[67]  P. Gambert,et al.  Inefficiency of insulin therapy to correct apolipoprotein A-I metabolic abnormalities in non-insulin-dependent diabetes mellitus. , 2000, Atherosclerosis.

[68]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[69]  J. Levy,et al.  Changes in Amylin and Amylin-Like Peptide Concentrations ana (β-Cell Function in Response to Sulfonylurea or Insulin Therapy in NIDDM , 1998, Diabetes Care.

[70]  G. Gyapay,et al.  Genetic studies of neuropeptide Y and neuropeptide Y receptors Y1 and Y5 regions in morbid obesity , 1997, Diabetologia.

[71]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[72]  M. Boguski,et al.  dbEST — database for “expressed sequence tags” , 1993, Nature Genetics.

[73]  M. DePamphilis,et al.  HUMAN DISEASE , 1957, The Ulster Medical Journal.