Hessian Equations of Krylov Type on Kähler Manifolds

In this paper, we consider Hessian equations with its structure as a combination of elementary symmetric functions on closed Kähler manifolds. We provide a sufficient and necessary condition for the solvability of these equations, which generalize the results of Hessian equations and Hessian quotient equations. As a consequence, we solve a complex Monge-Ampère type equation which was proposed by Chen.

[1]  N. Trudinger The Dirichlet problem for the prescribed curvature equations , 1990 .

[2]  J. Spruck,et al.  The Dirichlet problem for nonlinear second order elliptic equations, III: Functions of the eigenvalues of the Hessian , 1985 .

[3]  S. Grundel Moment Maps and Diffeomorphisms , 2010 .

[4]  D. Duffy Second‐Order Parabolic Differential Equations , 2013 .

[5]  Bo Guan,et al.  On a class of fully nonlinear elliptic equations on Hermitian manifolds , 2013, Calculus of Variations and Partial Differential Equations.

[6]  Pengfei Guan,et al.  A class of curvature type equations. , 2019, 1909.03645.

[7]  Xiuxiong Chen On the lower bound of the Mabuchi energy and its application , 2000 .

[8]  A. Hanani EQUATIONS DE MONGE-AMPERE SUR LES VARIETES HERMITIENNES COMPACTES , 1994 .

[9]  Weiling Sun On a Class of Fully Nonlinear Elliptic Equations on Closed Hermitian Manifolds , 2013, 1310.0362.

[10]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[11]  S. Yau On The Ricci Curvature of a Compact Kahler Manifold and the Complex Monge-Ampere Equation, I* , 1978 .

[12]  J. Spruck GEOMETRIC ASPECTS OF THE THEORY OF FULLY NON LINEAR ELLIPTIC EQUATIONS , 2003 .

[13]  Gábor Székelyhidi Fully non-linear elliptic equations on compact Hermitian manifolds , 2015, Journal of Differential Geometry.

[14]  Xu-jia Wang,et al.  A variational theory of the Hessian equation , 2001 .

[15]  Vamsi Pingali A priori estimates for a generalized Monge–Ampère PDE on some compact Kähler manifolds , 2016 .

[16]  Wei Sun The Parabolic Flows for Complex Quotient Equations , 2017, The Journal of Geometric Analysis.

[17]  A Priori Estimates for Complex Monge–Ampère Equation on Hermitian Manifolds , 2010 .

[18]  J. Koenderink Q… , 2014, Les noms officiels des communes de Wallonie, de Bruxelles-Capitale et de la communaute germanophone.

[19]  Convergence of the J-flow on Kähler surfaces , 2003, math/0306012.

[20]  A New Parabolic Flow in Kahler Manifolds , 2000, math/0009247.

[21]  Ben Andrews,et al.  Contraction of convex hypersurfaces in Euclidean space , 1994 .

[22]  A generalised Monge-Ampère equation , 2012, 1205.1266.

[23]  Weiling Sun ON A CLASS OF FULLY NONLINEAR ELLIPTIC EQUATIONS ON CLOSED HERMITIAN MANIFOLDS , 2021 .

[24]  P. Cherrier Equations de Monge-Ampère sur les variétés Hermitiennes compactes , 1987 .

[25]  Bo Guan,et al.  Complex Monge-Ampere equations and totally real submanifolds , 2009, 0910.1851.

[26]  A class of fully nonlinear equations arising from conformal geometry , 2006 .

[27]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[28]  Bo Guan,et al.  A Monge-Ampere Type Fully Nonlinear Equation on Hermitian Manifolds , 2012, 1210.5551.

[29]  Li Chen,et al.  A class of prescribed Weingarten curvature equations in Euclidean space , 2021, Communications in Partial Differential Equations.

[30]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[31]  Weiling Sun Parabolic complex Monge–Ampère type equations on closed Hermitian manifolds , 2013, 1311.3002.

[32]  Hessian equations on closed Hermitian manifolds , 2015, 1501.03553.

[33]  S. Dinew,et al.  Liouville and Calabi-Yau type theorems for complex Hessian equations , 2012, 1203.3995.

[34]  Li Chen,et al.  The classical Neumann problem for a class of mixed Hessian equations , 2020, Studies in Applied Mathematics.

[35]  Li Chen,et al.  The Neumann problem for a class of mixed complex Hessian equations , 2020, Discrete and Continuous Dynamical Systems.

[36]  H. Lawson,et al.  Calibrated geometries , 1982 .

[37]  Li Chen,et al.  A Class of Fully Nonlinear Equations Arising in Conformal Geometry , 2019, International Mathematics Research Notices.

[38]  S. Yau,et al.  A Monge?Ampère-type equation motivated by string theory , 2007 .

[39]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[40]  Damin Wu,et al.  A second order estimate for complex Hessian equations on a compact Kähler manifold , 2010 .

[41]  Equations du type de Monge–Ampère sur les variétés hermitiennes compactes , 1996 .

[42]  N. Krylov On the general notion of fully nonlinear second-order elliptic equations , 1995 .

[43]  Zbigniew Blocki Weak solutions to the complex Hessian equation , 2005 .

[44]  Tristan C. Collins,et al.  Convergence of the $J$-flow on toric manifolds , 2014, 1412.4809.

[45]  Xiangwen Zhang,et al.  The Fu–Yau equation with negative slope parameter , 2016, Inventiones mathematicae.

[46]  Valentino Tosatti,et al.  Estimates for the Complex Monge-Ampère Equation on Hermitian and Balanced Manifolds , 2009, 0909.4496.

[47]  A FULLY NONLINEAR GENERALIZED MONGE-AMPÈRE PDE ON A TORUS , 2014 .

[48]  H. Fang,et al.  On a class of fully nonlinear flows in Kähler geometry , 2009, 0904.3288.

[49]  On estimates for the Fu–Yau generalization of a Strominger system , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).

[50]  N. Buchdahl On compact Kähler surfaces , 1999 .

[51]  S. Yau,et al.  The theory of superstring with flux on non-Kähler manifolds and the complex Monge-Ampère equation , 2006, hep-th/0604063.

[52]  Valentino Tosatti,et al.  The complex Monge-Ampère equation on compact Hermitian manifolds , 2009, 0910.1390.

[53]  Lawrence C. Evans,et al.  Classical solutions of fully nonlinear, convex, second‐order elliptic equations , 1982 .

[54]  N. Krylov,et al.  BOUNDEDLY NONHOMOGENEOUS ELLIPTIC AND PARABOLIC EQUATIONS IN A DOMAIN , 1984 .

[55]  N. Trudinger,et al.  On some inequalities for elementary symmetric functions , 1994, Bulletin of the Australian Mathematical Society.