Simultaneous prediction of interfacial tension and phase equilibria in binary mixtures: An approach based on cubic equations of state with improved mixing rules

Abstract Vapor–liquid interfacial tensions of miscible mixtures have been predicted by applying the gradient theory to an improved Peng–Robinson equation of state. The modified Huron–Vidal mixing rule model has been considered for fitting vapor–liquid equilibrium data of miscible polar and non-polar mixtures and, then, for predicting the interfacial tension of these mixtures. According to results, an accurate and globally stable fitting of the vapor–liquid equilibrium data results on a physically coherent prediction of interfacial tensions in the full concentration range. In addition, we present a criteria based on the geometry of the grand potential function along the interface for assessing the predictive value of the GT. Calculations for subcritical binary mixtures are presented and compared to experimental data and the Parachor method for demonstrating the potential of the unified approach suggested in this work.

[1]  John S. Rowlinson,et al.  Molecular Theory of Capillarity , 1983 .

[2]  M. Michelsen A method for incorporating excess Gibbs energy models in equations of state , 1990 .

[3]  B. Widom Structure of the αγ interface , 1978 .

[4]  C. Mash,et al.  Thermodynamic properties of aqueous non-electrolyte mixtures II. Vapour pressures and excess Gibbs energies for water + ethanol at 303.15 to 363.15 K determined by an accurate static method , 1978 .

[5]  D. Fenby,et al.  Determination of the equilibrium constants of water-methanol deuterium exchange reactions from vapour pressure measurements , 1980 .

[6]  A. G. Williamson,et al.  Isothermal liquid-vapor equilibriums for system methanol-water , 1976 .

[7]  Osborne R. Quayle,et al.  The Parachors of Organic Compounds. An Interpretation and Catalogue. , 1953 .

[8]  G. C. Benson,et al.  Surface tensions of binary liquid systems. I. Mixtures of nonelectrolytes , 1970 .

[9]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[10]  L. Scriven,et al.  Semiempirical theory of surface tensions of pure normal alkanes and alcohols , 1978 .

[11]  Estrella Alvarez,et al.  Surface Tension of Alcohol Water + Water from 20 to 50 .degree.C , 1995 .

[12]  S. Imamura,et al.  Decomposition of dichlorodifluoromethane on boron phosphate (BPO4) catalyst , 1991 .

[13]  L. Scriven,et al.  Gradient theory of fluid microstructures , 1981 .

[14]  S. Enders,et al.  Calculation of surface properties of pure fluids using density gradient theory and SAFT-EOS , 2000 .

[15]  M. Huron,et al.  New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures☆ , 1979 .

[16]  D. Rao,et al.  Application of the parachor model to the prediction of miscibility in multi-component hydrocarbon systems , 2004 .

[17]  Aage Fredenslund,et al.  Vapor−Liquid Equilibria by UNIFAC Group Contribution. 6. Revision and Extension , 1979 .

[18]  J. Arons,et al.  Application of the Peng-Robinson equation of state to calculate interfacial tensions and profiles at vapour-liquid interfaces , 1993 .

[19]  S. Enders,et al.  Interfacial properties of binary mixtures , 2002 .

[20]  A. Michaels,et al.  Surface Tensions of Pure Liquids and Liquid Mixtures , 1949 .

[21]  P. H. van Konynenburg,et al.  Critical lines and phase equilibria in binary van der Waals mixtures , 1980, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[22]  W. Schröder,et al.  Dampf-Flüssigkeits-Gleichgewichtsmessungen im System Azeton-Chloroform , 1957 .

[23]  D. Peng,et al.  A New Two-Constant Equation of State , 1976 .

[24]  A. Peneloux,et al.  A new ebulliometric technique. Vapour-liquid equilibria in the binary systems ethanol-n-heptane and ethanol-n-nonane , 1982 .

[25]  C. Miqueu,et al.  Modelling of the surface tension of binary and ternary mixtures with the gradient theory of fluid interfaces , 2004 .

[26]  J. Wisniak,et al.  Application of cubic equations of state to the fit of vapor pressures of pure components , 1998 .

[27]  C. Panayiotou,et al.  Surface Tensions and Relative Adsorptions in Hydrogen-Bonded Systems , 1994 .

[28]  Stanley M. Walas,et al.  Phase equilibria in chemical engineering , 1985 .

[29]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[30]  J. Arons,et al.  Simultaneous prediction of phase equilibria, interfacial tension and concentration profiles , 1993 .

[31]  L. E. Scriven,et al.  Semiempirical theory of surface tension of binary systems , 1980 .

[32]  Stanley I. Sandler,et al.  Modeling Vapor-Liquid Equilibria: Cubic Equations of State and their Mixing Rules , 1998 .

[33]  D. Ambrose,et al.  Thermodynamic properties of organic oxygen compounds XXXIII. The vapour pressure of acetone , 1974 .

[34]  M. Sahimi,et al.  Surface tension of binary liquid–vapor mixtures: A comparison of mean-field and scaling theories , 1991 .

[35]  B. Djordjević,et al.  Vapour—liquid equilibria of the systems acetone—benzene, benzene—cyclohexane and acetone—cyclohexane at 25°C , 1978 .

[36]  B. Carey The gradient theory of fluid interfaces , 1979 .

[37]  P.M.W. Cornelisse,et al.  The Square Gradient Theory Applied - Simultaneous Modelling of Interfacial Tension and Phase Behaviour , 1997 .

[38]  J. Arons,et al.  Interfacial tensions of fluid mixtures with polar and associating components , 1998 .

[39]  Jefferson W. Tester,et al.  Thermodynamics and its applications , 1974 .

[40]  K. Aim,et al.  Heats of vaporization of simple non-spherical molecule compounds , 1972 .