Behavior of Circular Footings and Plate Anchors Embedded in Permafrost

The purpose of this paper is to develop a method for predicting the creep settlement and the bearing capacity of frozen soils under deep circular loads. The theory uses experimentally determined creep parameters of frozen soil and is intended to be applicable to the design of deep circular footings and screw anchors embedded in permafrost soils. On the basis of available experimental evidence, it was concluded that a mathematical model different from that usual in soil mechanics should be used in solving the time-dependent bearing capacity problem of such footings. The solution proposed in the paper was obtained by using the mathematical model of an expanding spherical cavity in a nonlinear viscoelastic-plastic medium with time, temperature, and normal pressure dependent strength properties. For a given footing or anchor, the theory furnishes either isochronous load-displacement curves, or load-creep rate curves, or a time-dependent bearing capacity for which formulas and graphs of nonlinear elastic-plast...