On the Cartesian product of an arbitrarily partitionable graph and a traceable graph

A graph G of order n is called arbitrarily partitionable (AP, for short) if, for every sequence τ=(n1,\textellipsis,nk) of positive integers that sum up to n, there exists a partition (V1,\textellipsis,Vk) of the vertex set V(G) such that each set Vi induces a connected subgraph of order ni. A graph G is called AP+1 if, given a vertex u∈V(G) and an index q∈ {1,\textellipsis,k}, such a partition exists with u∈Vq. We consider the Cartesian product of AP graphs. We prove that if G is AP+1 and H is traceable, then the Cartesian product G□ H is AP+1. We also prove that G□H is AP, whenever G and H are AP and the order of one of them is not greater than four.

[1]  Antoni Marczyk An Ore-type condition for arbitrarily vertex decomposable graphs , 2005, Electron. Notes Discret. Math..

[2]  Jakub Przybylo,et al.  On minimal arbitrarily partitionable graphs , 2012, Inf. Process. Lett..

[3]  Dominique Barth,et al.  On the shape of decomposable trees , 2009, Discret. Math..

[4]  Antoni Marczyk,et al.  An Ore-type condition for arbitrarily vertex decomposable graphs , 2005, Electron. Notes Discret. Math..

[5]  Gerhard J. Woeginger,et al.  Fully Decomposable Split Graphs , 2009, IWOCA.

[6]  Antoni Marczyk,et al.  A note on arbitrarily vertex decomposable graphs , 2006 .

[7]  Dominique Barth,et al.  A degree bound on decomposable trees , 2006, Discret. Math..

[8]  Zsolt Tuza,et al.  On-line arbitrarily vertex decomposable trees , 2007, Discret. Appl. Math..

[9]  M. Hornák,et al.  ARBITRARILY VERTEX DECOMPOSABLE TREES ARE OF MAXIMUM DEGREE AT MOST SIX , 2003 .

[10]  L. Lovász A homology theory for spanning tress of a graph , 1977 .

[11]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[12]  Ingo Schiermeyer,et al.  Dense Arbitrarily Vertex Decomposable Graphs , 2012, Graphs Comb..

[13]  Mariusz Wozniak,et al.  On-line arbitrarily vertex decomposable suns , 2009, Discret. Math..

[14]  Dominique Barth,et al.  Decomposable trees: a polynomial algorithm fortripodes , 2002, Discret. Appl. Math..

[15]  Jakub Przybylo,et al.  Partitioning powers of traceable or hamiltonian graphs , 2014, Theor. Comput. Sci..

[16]  Dennis Saleh Zs , 2001 .

[17]  Mariusz Wozniak,et al.  Arbitrarily vertex decomposable suns with few rays , 2009, Discret. Math..