On the Cartesian product of an arbitrarily partitionable graph and a traceable graph
暂无分享,去创建一个
Jakub Przybylo | Mariusz Wozniak | Olivier Baudon | Julien Bensmail | Rafal Kalinowski | Antoni Marczyk | M. Wozniak | Julien Bensmail | A. Marczyk | R. Kalinowski | J. Przybylo | O. Baudon
[1] Antoni Marczyk. An Ore-type condition for arbitrarily vertex decomposable graphs , 2005, Electron. Notes Discret. Math..
[2] Jakub Przybylo,et al. On minimal arbitrarily partitionable graphs , 2012, Inf. Process. Lett..
[3] Dominique Barth,et al. On the shape of decomposable trees , 2009, Discret. Math..
[4] Antoni Marczyk,et al. An Ore-type condition for arbitrarily vertex decomposable graphs , 2005, Electron. Notes Discret. Math..
[5] Gerhard J. Woeginger,et al. Fully Decomposable Split Graphs , 2009, IWOCA.
[6] Antoni Marczyk,et al. A note on arbitrarily vertex decomposable graphs , 2006 .
[7] Dominique Barth,et al. A degree bound on decomposable trees , 2006, Discret. Math..
[8] Zsolt Tuza,et al. On-line arbitrarily vertex decomposable trees , 2007, Discret. Appl. Math..
[9] M. Hornák,et al. ARBITRARILY VERTEX DECOMPOSABLE TREES ARE OF MAXIMUM DEGREE AT MOST SIX , 2003 .
[10] L. Lovász. A homology theory for spanning tress of a graph , 1977 .
[11] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[12] Ingo Schiermeyer,et al. Dense Arbitrarily Vertex Decomposable Graphs , 2012, Graphs Comb..
[13] Mariusz Wozniak,et al. On-line arbitrarily vertex decomposable suns , 2009, Discret. Math..
[14] Dominique Barth,et al. Decomposable trees: a polynomial algorithm fortripodes , 2002, Discret. Appl. Math..
[15] Jakub Przybylo,et al. Partitioning powers of traceable or hamiltonian graphs , 2014, Theor. Comput. Sci..
[16] Dennis Saleh. Zs , 2001 .
[17] Mariusz Wozniak,et al. Arbitrarily vertex decomposable suns with few rays , 2009, Discret. Math..