Detecting and creating oscillations using multifractal methods
暂无分享,去创建一个
[1] J. Aubry,et al. Random Wavelet Series , 2002 .
[2] Stéphane Jaffard,et al. On the Frisch–Parisi conjecture , 2000 .
[3] Emmanuel Bacry,et al. Singularity spectrum of multifractal functions involving oscillating singularities , 1998 .
[4] L. Olsen,et al. A Multifractal Formalism , 1995 .
[5] U. Frisch. FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .
[6] Y. Meyer,et al. Ondelettes et bases hilbertiennes. , 1986 .
[7] Stéphane Seuret,et al. From Multifractal Measures to Multifractal Wavelet Series , 2005 .
[8] Yves Meyer,et al. Wavelets, Vibrations and Scalings , 1997 .
[9] Jacques Lévy Véhel,et al. The local Hölder function of a continuous function , 2002 .
[10] David L. Donoho,et al. De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.
[11] Inside Singularity Sets of Random Gibbs Measures , 2005, math/0503420.
[12] G. David,et al. Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation , 1985 .
[13] Martin Greiner,et al. Wavelets , 2018, Complex..
[14] James S. Walker. WAVELETS, VIBRATIONS AND SCALINGS (CRM Monograph Series 9) , 1999 .
[15] Stéphane Jaffard,et al. How smooth is almost every function in a Sobolev space , 2006 .
[16] G. Michon,et al. On the multifractal analysis of measures , 1992 .
[17] I. Johnstone,et al. Wavelet Shrinkage: Asymptopia? , 1995 .
[18] M. Lapidus,et al. Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot , 2004 .
[19] Stéphane Jaffard. Beyond Besov Spaces Part 1: Distributions of Wavelet Coefficients , 2004 .
[20] Y. Meyer,et al. Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions , 1996 .
[21] Sur les singularités oscillantes et le formalisme multifractal , 2002 .
[22] J. L. Véhel,et al. 2-microlocal Formalism , 2003 .