Detecting and creating oscillations using multifractal methods

By comparing the Hausdorff multifractal spectrum with the large deviations spectrum of a given continuous function f, we find sufficient conditions ensuring that f possesses oscillating singularities. Using a similar approach, we study the nonlinear wavelet threshold operator which associates with any function f = ∑j ∑kdj,kψj,k ∈ L2(ℝ) the function series ft whose wavelet coefficients are dtj,k = dj,k1, for some fixed real number γ > 0. This operator creates a context propitious to have oscillating singularities. As a consequence, we prove that the series ft may have a multifractal spectrum with a support larger than the one of f . We exhibit an example of function f ∈ L2(ℝ) such that the associated thresholded function series ft effectively possesses oscillating singularities which were not present in the initial function f . This series ft is a typical example of function with homogeneous non-concave multifractal spectrum and which does not satisfy the classical multifractal formalisms. (© 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  J. Aubry,et al.  Random Wavelet Series , 2002 .

[2]  Stéphane Jaffard,et al.  On the Frisch–Parisi conjecture , 2000 .

[3]  Emmanuel Bacry,et al.  Singularity spectrum of multifractal functions involving oscillating singularities , 1998 .

[4]  L. Olsen,et al.  A Multifractal Formalism , 1995 .

[5]  U. Frisch FULLY DEVELOPED TURBULENCE AND INTERMITTENCY , 1980 .

[6]  Y. Meyer,et al.  Ondelettes et bases hilbertiennes. , 1986 .

[7]  Stéphane Seuret,et al.  From Multifractal Measures to Multifractal Wavelet Series , 2005 .

[8]  Yves Meyer,et al.  Wavelets, Vibrations and Scalings , 1997 .

[9]  Jacques Lévy Véhel,et al.  The local Hölder function of a continuous function , 2002 .

[10]  David L. Donoho,et al.  De-noising by soft-thresholding , 1995, IEEE Trans. Inf. Theory.

[11]  Inside Singularity Sets of Random Gibbs Measures , 2005, math/0503420.

[12]  G. David,et al.  Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation , 1985 .

[13]  Martin Greiner,et al.  Wavelets , 2018, Complex..

[14]  James S. Walker WAVELETS, VIBRATIONS AND SCALINGS (CRM Monograph Series 9) , 1999 .

[15]  Stéphane Jaffard,et al.  How smooth is almost every function in a Sobolev space , 2006 .

[16]  G. Michon,et al.  On the multifractal analysis of measures , 1992 .

[17]  I. Johnstone,et al.  Wavelet Shrinkage: Asymptopia? , 1995 .

[18]  M. Lapidus,et al.  Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot , 2004 .

[19]  Stéphane Jaffard Beyond Besov Spaces Part 1: Distributions of Wavelet Coefficients , 2004 .

[20]  Y. Meyer,et al.  Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions , 1996 .

[21]  Sur les singularités oscillantes et le formalisme multifractal , 2002 .

[22]  J. L. Véhel,et al.  2-microlocal Formalism , 2003 .