Monte Carlo simulation and molecular theory of tethered polyelectrolytes.

We investigate the structure of end-tethered polyelectrolytes using Monte Carlo simulations and molecular theory. In the Monte Carlo calculations we explicitly take into account counterions and polymer configurations and calculate electrostatic interaction using Ewald summation. Rosenbluth biasing, distance biasing, and the use of a lattice are all used to speed up Monte Carlo calculation, enabling the efficient simulation of the polyelectrolyte layer. The molecular theory explicitly incorporates the chain conformations and the possibility of counterion condensation. Using both Monte Carlo simulation and theory, we examine the effect of grafting density, surface charge density, charge strength, and polymer chain length on the distribution of the polyelectrolyte monomers and counterions. For all grafting densities examined, a sharp decrease in brush height is observed in the strongly charged regime using both Monte Carlo simulation and theory. The decrease in layer thickness is due to counterion condensation within the layer. The height of the polymer layer increases slightly upon charging the grafting surface. The molecular theory describes the structure of the polyelectrolyte layer well in all the different regimes that we have studied.

[1]  P. G. de Gennes,et al.  Conformations of Polymers Attached to an Interface , 1980 .

[2]  D. Cheong,et al.  Phase behaviour of polyampholyte chains from grand canonical Monte Carlo simulations , 2005 .

[3]  A. Dobrynin,et al.  Theory of polyelectrolytes in solutions and at surfaces , 2005 .

[4]  P. Pincus,et al.  Colloid stabilization with grafted polyelectrolytes , 1991 .

[5]  C. Seidel Strongly stretched polyelectrolyte brushes , 2003 .

[6]  S. Alexander,et al.  Adsorption of chain molecules with a polar head a scaling description , 1977 .

[7]  Collapse of flexible polyelectrolytes in multivalent salt solutions , 1999, cond-mat/9908084.

[8]  R. Jerome,et al.  Direct Measurements of Interactions between Hydrophobically Anchored Strongly Charged Polyelectrolyte Brushes , 2000 .

[9]  J. E. Mattson,et al.  A Group-IV Ferromagnetic Semiconductor: MnxGe1−x , 2002, Science.

[10]  Neutral and charged polymers at interfaces , 2002, cond-mat/0203364.

[11]  Jean-François Joanny,et al.  Collapse of polyelectrolyte brushes: Scaling theory and simulations , 2001 .

[12]  M. Carignano,et al.  Adsorption of model charged proteins on charged surfaces with grafted polymers , 2002 .

[13]  O. Borisov,et al.  Diagram of the States of a Grafted Polyelectrolyte Layer , 1994 .

[14]  P. Auroy,et al.  Complexation and distribution of counterions in a grafted polyelectrolyte layer , 2001 .

[15]  M. Whitmore,et al.  Monte Carlo and numerical self-consistent field study of end-tethered polymers in good solvent , 1999 .

[16]  M. Carignano,et al.  Statistical thermodynamic theory of grafted polymeric layers , 1993 .

[17]  Axel Arnold,et al.  A novel method for calculating electrostatic interactions in 2D periodic slab geometries , 2002 .

[18]  E. Sudhölter,et al.  Weak Polyacid Brushes: Preparation by LB Deposition and Optically Detected Titrations , 1999 .

[19]  M. Carignano,et al.  Tethered Polymer Layers , 1996 .

[20]  M. Tirrell,et al.  A Study of Polyelectrolyte Brushes Formed from Adsorption of Amphiphilic Diblock Copolymers Using the Surface Forces Apparatus , 2002 .

[21]  Timothy P. Lodge,et al.  Tethered chains in polymer microstructures , 1992 .

[22]  R. Cohen,et al.  Tribological characteristics of polyelectrolyte multilayers , 2004 .

[23]  Eckhard Spohr,et al.  Effect of electrostatic boundary conditions and system size on the interfacial properties of water and aqueous solutions , 1997 .

[24]  Harald F. Okorn-Schmidt,et al.  Characterization of silicon surface preparation processes for advanced gate dielectrics , 1999, IBM J. Res. Dev..

[25]  J. Rühe,et al.  Segment density profiles of polyelectrolyte brushes determined by Fourier transform ellipsometry , 1999 .

[26]  Mays,et al.  Free-standing black films of polymers: A model of charged brushes in interaction. , 1995, Physical review letters.

[27]  Auroy,et al.  Density Profile of Polyelectrolyte Brushes. , 1995, Physical review letters.

[28]  Athanassios Z. Panagiotopoulos,et al.  Free energy and phase equilibria for the restricted primitive model of ionic fluids from Monte Carlo simulations , 1994 .

[29]  I. Szleifer,et al.  Competitive adsorption in model charged protein mixtures: Equilibrium isotherms and kinetics behavior , 2003 .

[30]  N. Higashi,et al.  Polyelectrolyte brush layers studied by surface forces measurement: Dependence on pH and salt concentrations and scaling , 2002 .

[31]  M. O. D. L. Cruz,et al.  Ion condensation in salt‐free dilute polyelectrolyte solutions , 1995 .

[32]  K. Binder Monte Carlo and molecular dynamics simulations in polymer science , 1995 .

[33]  I. Szleifer,et al.  Weak polyelectrolytes tethered to surfaces: Effect of geometry, acid–base equilibrium and electrical permittivity , 2006 .

[34]  G. Orkoulas,et al.  Monte carlo study of coulombic criticality in polyelectrolytes. , 2003, Physical review letters.

[35]  I. Szleifer,et al.  Controlled release of proteins from polymer-modified surfaces. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[36]  S. Balamurugan,et al.  Highly water-soluble thermally responsive poly(thiophene)-based brushes. , 2005, Angewandte Chemie.

[37]  Uri Raviv,et al.  Lubrication by charged polymers , 2003, Nature.

[38]  C. Daniel Frisbie,et al.  Direct Force Measurements at Polymer Brush Surfaces by Atomic Force Microscopy , 1998 .

[39]  D. Heyes,et al.  Molecular dynamics computer simulation of surface properties of crystalline potassium chloride , 1977 .

[40]  C. Helm,et al.  Charged polymer brushes - counterion incorporation and scaling relations. , 1998 .

[41]  Terence Cosgrove,et al.  Configuration of terminally attached chains at the solid/solvent interface: self-consistent field theory and a Monte Carlo model , 1987 .

[42]  G. J. Fleer,et al.  Polyelectrolytes tethered to a similarly charged surface , 2001 .

[43]  J. Mays,et al.  Thickness and density profiles of polyelectrolyte brushes: dependence on grafting density and salt concentration. , 2004, Physical review letters.

[44]  A. Panagiotopoulos,et al.  Critical point of electrolyte mixtures. , 2005, The Journal of chemical physics.

[45]  C. Helm,et al.  Polyelectrolyte Brushes Grafted at the Air/Water Interface , 1997 .

[46]  A. W. Rosenbluth,et al.  MONTE CARLO CALCULATION OF THE AVERAGE EXTENSION OF MOLECULAR CHAINS , 1955 .

[47]  Owen J. Hehmeyer,et al.  Molecular dynamics simulations of grafted polyelectrolytes on two apposing walls. , 2005, The Journal of chemical physics.

[48]  Y. Levi-Kalisman,et al.  Selective dispersion of single-walled carbon nanotubes in the presence of polymers: the role of molecular and colloidal length scales. , 2004, Journal of the American Chemical Society.

[49]  C. Seidel,et al.  Strongly Charged Polyelectrolyte Brushes: A Molecular Dynamics Study , 2000 .

[50]  P. Gennes Scaling Concepts in Polymer Physics , 1979 .

[51]  J. Rühe,et al.  Preparation and Characterization of a Polyelectrolyte Monolayer Covalently Attached to a Planar Solid Surface , 1999 .

[52]  R. Toral,et al.  Density profile of terminally anchored polymer chains: a Monte Carlo study , 1990 .

[53]  Scott T. Milner,et al.  Theory of the grafted polymer brush , 1988 .

[54]  M. Tirrell,et al.  Adsorption of Hydrophilic-Hydrophobic Block Copolymers on Silica from Aqueous Solutions , 1995 .

[55]  I. Szleifer,et al.  Competitive adsorption of model charged proteins: the effect of total charge and charge distribution. , 2004, Journal of colloid and interface science.

[56]  P. Auroy,et al.  Determination of the structure of polyelectrolyte brushes , 1999 .

[57]  G. J. Fleer,et al.  Adsorption of ionic block copolymers: self-consistent-field analysis and scaling predictions. , 1993 .

[58]  A. Chakrabarti,et al.  Conformational properties of polyelectrolyte brushes: A Monte Carlo and self‐consistent‐field study , 1996 .

[59]  J. Lahann,et al.  A Reversibly Switching Surface , 2003, Science.