Efficient importance sampling in low dimensions using affine arithmetic

Despite the development of sophisticated techniques such as sequential Monte Carlo (Del Moral et al. in J R Stat Soc Ser B 68(3):411–436, 2006), importance sampling (IS) remains an important Monte Carlo method for low dimensional target distributions (Chopin and Ridgway in Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation, 32:64–87, 2017). This paper describes a new technique for constructing proposal distributions for IS, using affine arithmetic (de Figueiredo and Stolfi in Numer Algorithms 37(1–4):147–158, 2004). This work builds on the Moore rejection sampler (Sainudiin in Machine interval experiments, Cornell University, Ithaca, 2005; Sainudiin and York in Algorithms Mol Biol 4(1):1, 2009) to which we provide a comparison.

[1]  Luc Jaulin,et al.  Applied Interval Analysis , 2001, Springer London.

[2]  Richard G. Everitt,et al.  Sequential Bayesian inference for mixture models and the coalescent using sequential Monte Carlo samplers with transformations , 2016 .

[3]  P. Diaconis,et al.  The sample size required in importance sampling , 2015, 1511.01437.

[4]  De Figueiredo,et al.  Self-validated numerical methods and applications , 1997 .

[5]  Raazesh Sainudiin,et al.  Machine Interval Experiments , 2010 .

[6]  O. Papaspiliopoulos,et al.  Importance Sampling: Intrinsic Dimension and Computational Cost , 2015, 1511.06196.

[7]  P. Moral,et al.  Sequential Monte Carlo samplers , 2002, cond-mat/0212648.

[8]  E. Walter,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2001 .

[9]  M. Pitt,et al.  Importance Sampling Squared for Bayesian Inference in Latent Variable Models , 2013, 1309.3339.

[10]  W. Gilks,et al.  Adaptive Rejection Metropolis Sampling Within Gibbs Sampling , 1995 .

[11]  Ramon E. Moore Interval arithmetic and automatic error analysis in digital computing , 1963 .

[12]  Alastair J. Walker,et al.  An Efficient Method for Generating Discrete Random Variables with General Distributions , 1977, TOMS.

[13]  Guillaume Deffuant,et al.  Adaptive approximate Bayesian computation for complex models , 2011, Computational Statistics.

[14]  R. B. Kearfott Rigorous Global Search: Continuous Problems , 1996 .

[15]  W. Tucker The Lorenz attractor exists , 1999 .

[16]  Jorge Stolfi,et al.  Affine Arithmetic: Concepts and Applications , 2004, Numerical Algorithms.

[17]  Andrew M. Stuart,et al.  Importance Sampling: Computational Complexity and Intrinsic Dimension , 2015 .

[18]  Raazesh Sainudiin,et al.  Auto-validating von Neumann rejection sampling from small phylogenetic tree spaces , 2006, Algorithms for Molecular Biology.

[19]  Richard G. Everitt,et al.  Bayesian model comparison with un-normalised likelihoods , 2015, Stat. Comput..

[20]  Luca Martino,et al.  On the flexibility of the design of multiple try Metropolis schemes , 2012, Computational Statistics.

[21]  J. Geweke,et al.  Bayesian Inference in Econometric Models Using Monte Carlo Integration , 1989 .

[22]  Jun S. Liu,et al.  Sequential Imputations and Bayesian Missing Data Problems , 1994 .

[23]  Radford M. Neal Annealed importance sampling , 1998, Stat. Comput..

[24]  C. Andrieu,et al.  The pseudo-marginal approach for efficient Monte Carlo computations , 2009, 0903.5480.

[25]  Wolfgang Enger,et al.  Interval Ray Tracing — a divide and conquer strategy for realistic computer graphics , 1992, The Visual Computer.

[26]  H. Benali,et al.  Automated rejection sampling from product of distributions , 2004, Comput. Stat..

[27]  James Ridgway,et al.  Leave Pima Indians alone: binary regression as a benchmark for Bayesian computation , 2015, 1506.08640.