CoRoT ? 223992193: A new, low-mass, pre-main sequence eclipsing binary with evidence of a circumbinary disk

We present the discovery of CoRoT 223992193, a double-lined, detached eclipsing binary, comprising two pre-main sequence M dwarfs, discovered by the CoRoT space mission during a 23-day observation of the 3 Myr old NGC 2264 star-forming region. Using multi-epoch optical and near-IR follow-up spectroscopy with FLAMES on the Very Large Telescope and ISIS on the William Herschel Telescope we obtain a full orbital solution and derive the fundamental parameters of both stars by modelling the light curve and radial velocity data. The orbit is circular and has a period of 3:8745745 0:0000014 days. The masses and radii of the two stars are 0:67 0:01 and 0:495 0:007 M and 1:30 0:04 and 1:11 +0:04 0:05 R , respectively. This system is a useful test of evolutionary models of young low-mass stars, as it lies in a region of parameter space where observational constraints are scarce; comparison with these models indicates an apparent age of 3.5‐6 Myr. The systemic velocity is within 1 of the cluster value which, along with the presence of lithium absorption, strongly indicates cluster membership. The CoRoT light curve also contains large-amplitude, rapidly evolving out-of-eclipse variations, which are di cult to explain using starspots alone. The system’s spectral energy distribution reveals a mid-infrared excess, which we model as thermal emission from a small amount of dust located in the inner cavity of a circumbinary disk. In turn, this opens up the possibility that some of the out-of-eclipse variability could be due to occultations of the central stars by material located at the inner edge or in the central cavity of the circumbinary disk.

[1]  J. Southworth The solar-type eclipsing binary system LL Aquarii , 2013, 1308.1320.

[2]  T. Naylor,et al.  No evidence for intense, cold accretion on to YSOs from measurements of Li in T-Tauri stars , 2013, 1306.2282.

[3]  F. Favata,et al.  Rotation in NGC 2264: a study based on CoRoT photometric observations , 2013, 1301.1856.

[4]  R. Wade,et al.  KEPLER STUDIES OF LOW-MASS ECLIPSING BINARIES. I. PARAMETERS OF THE LONG-PERIOD BINARY KIC 6131659 , 2012, 1211.1068.

[5]  Megan E. Schwamb,et al.  PLANET HUNTERS: A TRANSITING CIRCUMBINARY PLANET IN A QUADRUPLE STAR SYSTEM , 2012, 1210.3612.

[6]  Howard Isaacson,et al.  Kepler-47: A Transiting Circumbinary Multiplanet System , 2012, Science.

[7]  K. Kinemuchi,et al.  THE NEPTUNE-SIZED CIRCUMBINARY PLANET KEPLER-38b , 2012, 1208.3712.

[8]  K. Covey,et al.  YSOVAR: SIX PRE-MAIN-SEQUENCE ECLIPSING BINARIES IN THE ORION NEBULA CLUSTER , 2012, 1206.6350.

[9]  G. Chabrier,et al.  OBSERVED LUMINOSITY SPREAD IN YOUNG CLUSTERS AND FU Ori STARS: A UNIFIED PICTURE , 2012, 1206.2374.

[10]  H. Bouy,et al.  Spectroscopy of new brown dwarf members of ρ Ophiuchi and an updated initial mass function , 2012, 1201.1912.

[11]  Jie Li,et al.  Transiting circumbinary planets Kepler-34 b and Kepler-35 b , 2012, Nature.

[12]  J. Krolik,et al.  THREE-DIMENSIONAL MAGNETOHYDRODYNAMIC SIMULATIONS OF CIRCUMBINARY ACCRETION DISKS: DISK STRUCTURES AND ANGULAR MOMENTUM TRANSPORT , 2011, 1110.4866.

[13]  Warren R. Brown,et al.  Kepler-16: A Transiting Circumbinary Planet , 2011, Science.

[14]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[15]  P. Berlind,et al.  LSPM J1112+7626: DETECTION OF A 41 DAY M-DWARF ECLIPSING BINARY FROM THE MEARTH TRANSIT SURVEY , 2011, 1109.2055.

[16]  S. Degl'Innocenti,et al.  The Pisa pre-main sequence tracks and isochrones - A database covering a wide range of Z, Y, mass, and age values , 2011, 1107.2318.

[17]  H. C. Stempels,et al.  Precise orbit solution of MML 53, a low-mass, pre-main sequence eclipsing binary in Upper Centaurus Lupus , 2011 .

[18]  K. Covey,et al.  YSOVAR: THE FIRST SENSITIVE, WIDE-AREA, MID-INFRARED PHOTOMETRIC MONITORING OF THE ORION NEBULA CLUSTER , 2011, 1103.5238.

[19]  F. Favata,et al.  PULSATIONAL ANALYSIS OF V 588 MON AND V 589 MON OBSERVED WITH THE MOST AND CoRoT  SATELLITES , 2011, 1101.2372.

[20]  H. C. Stempels,et al.  MML 53: a new low-mass, pre-main sequence eclipsing binary in the Upper Centaurus-Lupus region discovered by SuperWASP , 2010, 1008.4312.

[21]  G. Chabrier,et al.  Effect of episodic accretion on the structure and the lithium depletion of low-mass stars and planet-hosting stars , 2010, 1008.4288.

[22]  T. Harrison,et al.  LOW-MASS ECLIPSING BINARIES IN THE INITIAL KEPLER DATA RELEASE , 2010, 1007.4295.

[23]  Sara Seager,et al.  KEPLER ECLIPSING BINARY STARS. I. CATALOG AND PRINCIPAL CHARACTERIZATION OF 1879 ECLIPSING BINARIES IN THE FIRST DATA RELEASE , 2010, 1006.2815.

[24]  F. Favata,et al.  Accretion dynamics and disk evolution in NGC 2264: a study based on the Corot photometric observations , 2010, 1005.4384.

[25]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[26]  P. Armitage Astrophysics of Planet Formation , 2010 .

[27]  David K. Sing,et al.  Stellar limb-darkening coefficients for CoRot and Kepler , 2009, 0912.2274.

[28]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[29]  G. Chabrier,et al.  EPISODIC ACCRETION AT EARLY STAGES OF EVOLUTION OF LOW-MASS STARS AND BROWN DWARFS: A SOLUTION FOR THE OBSERVED LUMINOSITY SPREAD IN H–R DIAGRAMS? , 2009, 0907.3886.

[30]  K. Covey,et al.  THE DISTANCE TO NGC 2264 , 2009, 0907.3139.

[31]  Tim Naylor,et al.  Are pre-main-sequence stars older than we thought? , 2009, 0907.2307.

[32]  T. Henning,et al.  Star and Protoplanetary Disk Properties in Orion's Suburbs , 2009, 0907.2380.

[33]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[34]  M. Bessell,et al.  A SPITZER VIEW OF THE YOUNG OPEN CLUSTER NGC 2264 , 2009, 0906.3072.

[35]  M. Auvergne,et al.  The CoRoT satellite in flight : description and performance , 2009, 0901.2206.

[36]  K. Abazajian,et al.  THE SEVENTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY , 2008, 0812.0649.

[37]  S. Dahm The Young Cluster and Star Forming Region NGC 2264 , 2008, 0808.3835.

[38]  K. Stassun,et al.  Surprising dissimilarities in a newly formed pair of ‘identical twin’ stars , 2008, Nature.

[39]  Kjell Eriksson,et al.  A grid of MARCS model atmospheres for late-type stars. I. Methods and general properties , 2008, 0805.0554.

[40]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[41]  T. Naylor,et al.  Fitting the young main-sequence: distances, ages and age spreads , 2008, 0801.4085.

[42]  H. C. Stempels,et al.  The pre-main-sequence eclipsing binary ASAS J052821+0338.5 , 2008, 0801.3927.

[43]  W. Herbst,et al.  Results of the ROTOR-program II. The long-term photometric variability of weak-line T Tauri stars ⋆ , 2008, 0801.3543.

[44]  M. Bessell,et al.  THE INITIAL MASS FUNCTION AND YOUNG BROWN DWARF CANDIDATES IN NGC 2264. III. PHOTOMETRIC DATA , 2008 .

[45]  T. Mazeh Observational Evidence for Tidal Interaction in Close Binary Systems , 2007, 0801.0134.

[46]  K. Stassun,et al.  Discovery of Par 1802 as a Low-Mass, Pre-Main-Sequence Eclipsing Binary in the Orion Star-Forming Region , 2007, 0709.3356.

[47]  Gilles Chabrier,et al.  Evolution of low-mass star and brown dwarf eclipsing binaries , 2007, 0707.1792.

[48]  B. Patten,et al.  X-Ray Observations of the Young Cluster NGC 2264 , 2007 .

[49]  M. Irwin,et al.  The Monitor project: JW 380 – a 0.26‐, 0.15‐M⊙, pre‐main‐sequence eclipsing binary in the Orion nebula cluster , 2007, 0706.2325.

[50]  K. Stassun,et al.  A Surprising Reversal of Temperatures in the Brown Dwarf Eclipsing Binary 2MASS J05352184–0546085 , 2007, 0704.3106.

[51]  D. Buzasi,et al.  Eclipsing binaries observed with the WIRE satellite. II. beta Aurigae and non-linear limb darkening , 2007, astro-ph/0703634.

[52]  R. Indebetouw,et al.  Interpreting Spectral Energy Distributions from Young Stellar Objects. II. Fitting Observed SEDs Using a Large Grid of Precomputed Models , 2006, astro-ph/0612690.

[53]  S. Hodgkin,et al.  Magnetospheric accretion-ejection processes in the classical T Tauri star AA Tauri , 2006, astro-ph/0611787.

[54]  Suzanne Aigrain,et al.  The Monitor project: searching for occultations in young open clusters , 2006, astro-ph/0611431.

[55]  D. Fabricant,et al.  Kinematics of NGC 2264: Signs of Cluster Formation , 2006, 0711.0380.

[56]  S. Sciortino,et al.  ACIS-I observations of NGC 2264. Membership and X-ray properties of PMS stars , 2006, astro-ph/0604243.

[57]  Keivan G. Stassun,et al.  Discovery of two young brown dwarfs in an eclipsing binary system , 2006, Nature.

[58]  S. E. Persson,et al.  Spitzer and Magellan Observations of NGC 2264: A Remarkable Star-forming Core near IRS 2 , 2006, astro-ph/0601300.

[59]  G. Torres,et al.  Absolute Properties of the Eclipsing Binary Star RW Lacertae , 2005 .

[60]  Carl E. Rasmussen,et al.  Gaussian Processes for Machine Learning , 2005, Adaptive computation and machine learning.

[61]  A. Prsa,et al.  A Computational Guide to Physics of Eclipsing Binaries. I. Demonstrations and Perspectives , 2005, astro-ph/0503361.

[62]  T. Simon,et al.  The T Tauri Star Population of the Young Cluster NGC 2264 , 2005 .

[63]  Princeton,et al.  The Sloan Digital Sky Survey View of the Palomar-Green Bright Quasar Survey , 2005, astro-ph/0506022.

[64]  Elvira Covino,et al.  Improved fundamental parameters for the low-mass pre-main sequence eclipsing system RX J0529.4+0041 , 2004 .

[65]  F. Bouchy,et al.  Doppler follow-up of OGLE transiting companions in the Galactic Bulge , 2004, astro-ph/0410346.

[66]  M. Bessell,et al.  The Initial Mass Function and Young Brown Dwarf Candidates in NGC 2264. I. The Initial Mass Function around S Monocerotis , 2004 .

[67]  B. Smalley,et al.  Eclipsing binaries as standard candles: HD 23642 and the distance to the Pleiades , 2004, astro-ph/0409507.

[68]  R. Makidon,et al.  Periodic Variability of Pre-Main-Sequence Stars in the NGC 2264 OB Association , 2004 .

[69]  P. Maxted,et al.  Eclipsing binaries in open clusters. II. V453 Cyg in NGC 6871 , 2004, astro-ph/0403572.

[70]  Heidelberg,et al.  A rotational and variability study of a large sample of PMS stars in NGC 2264 , 2004, astro-ph/0402188.

[71]  J. Bally,et al.  Deep Imaging Surveys of Star-forming Clouds. I. New Herbig-Haro Flows in NGC 2264 , 2004 .

[72]  L. Hillenbrand,et al.  Chandra X-Ray Observations of Young Clusters. I. NGC 2264 Data , 2004, astro-ph/0401533.

[73]  M. Irwin,et al.  Practical planet prospecting , 2004, astro-ph/0401393.

[74]  Keivan G. Stassun,et al.  Dynamical Mass Constraints on Low-Mass Pre-Main-Sequence Stellar Evolutionary Tracks: An Eclipsing Binary in Orion with a 1.0 M☉ Primary and a 0.7 M☉ Secondary , 2003, astro-ph/0312575.

[75]  Lynne A. Hillenbrand,et al.  An Assessment of Dynamical Mass Constraints on Pre-Main-Sequence Evolutionary Tracks , 2003, astro-ph/0312189.

[76]  Wm. A. Wheaton,et al.  2MASS All Sky Catalog of point sources. , 2003 .

[77]  L. Hillenbrand,et al.  Circumstellar Disk Candidates Identified in NGC 2264 , 2002 .

[78]  Juan M. Alcala,et al.  New low-mass pre-main sequence spectroscopic binaries in Orion , 2001 .

[79]  M. Bessell,et al.  The Pre-Main-Sequence Stars and Initial Mass Function of NGC 2264 , 2000 .

[80]  D. Soderblom,et al.  Spectroscopic Abundances in Cool Pleiades Dwarfs and NGC 2264 Stars , 2000 .

[81]  M. Bessell,et al.  UBVRI H(alpha) Photometry of the Young Open Cluster NGC 2264 , 1997 .

[82]  R. Mathieu,et al.  Evidence for Cleared Regions in the Disks Around Pre-Main-Sequence Spectroscopic Binaries , 1997 .

[83]  S. Lubow,et al.  Mass Flow through Gaps in Circumbinary Disks , 1996 .

[84]  Johannes Andersen,et al.  Accurate masses and radii of normal stars , 1991 .

[85]  S. Baliunas,et al.  A Prescription for period analysis of unevenly sampled time series , 1986 .

[86]  S. Strom,et al.  The star-forming history of the young cluster NGC 2264. , 1983 .

[87]  J. Tonry,et al.  A survey of galaxy redshifts. I. Data reduction techniques. , 1979 .

[88]  D. Lin,et al.  On the structure of circumbinary accretion disks and the tidal evolution of commensurable satellites , 1979 .

[89]  J. Papaloizou,et al.  Tidal torques on accretion discs in close binary systems. , 1977 .

[90]  Bohdan Paczynski,et al.  A model of accretion disks in close binaries. , 1977 .

[91]  Robert E. Wilson,et al.  Realization of Accurate Close-Binary Light Curves: Application to MR Cygni , 1971 .

[92]  M. Walker Studies of extremely young clusters. I. NGC 2264. , 1956 .

[93]  Annie Baglin,et al.  COROT: A minisat for pionnier science, asteroseismology and planets finding , 2003 .

[94]  P. Etzel,et al.  Photometric orbits of seven detached eclipsing binaries , 1981 .

[95]  Paul B. Etzel,et al.  A Simple Synthesis Method for Solving the Elements of Well-Detached Eclipsing Systems , 1981 .

[96]  E. B. Carling,et al.  Photometric and Spectroscopic Binary Systems , 1981 .

[97]  Burt Nelson,et al.  Eclipsing-Binary Solutions by Sequential Optimization of the Parameters , 1972 .

[98]  M. Osorio,et al.  An Electronic Publication Dedicated to Early Stellar Evolution and Molecular Clouds Luminosity Functions of Young Clusters: Modeling the Substellar Mass Regime Kinetic Temperatures in the Orion Bar , 2022 .