Turbulence without Tears : Residual-Based VMS , Weak Boundary Conditions , and Isogeometric Analysis of Wall-Bounded Flows

In this work, we combine i) NURBS-based isogeometric analysis, ii) residual-driven turbulence modeling and iii) weak imposition of Dirichlet boundary conditions on uniform, unstretched meshes to compute wall-bounded turbulent flows. While the first two ingredients were shown to be successful for turbulence computations at medium Reynolds number [1, 5], it is the weak imposition of no-slip boundary conditions on coarse uniform meshes that maintains the good performance of the proposed methodology at higher Reynolds number [7, 8]. These three ingredients form a basis of a possible practical strategy for computing engineering flows, somewhere between RANS and LES in complexity. We demonstrate this by solving two challenging incompressible turbulent benchmark problems: channel flow at friction-velocity based Reynolds number 2003 and flow in a planar asymmetric diffuser. We observe good agreement between our calculations of mean flow quantities and both reference computations and experimental data. This lends some credence to the proposed methodology, which we believe may become a viable engineering tool.

[1]  T. Hughes,et al.  Variational and Multiscale Methods in Turbulence , 2005 .

[2]  Parviz Moin,et al.  Zonal Embedded Grids for Numerical Simulations of Wall-Bounded Turbulent Flows , 1996 .

[3]  R. Moser,et al.  Two-Dimensional Mesh Embedding for B-spline Methods , 1998 .

[4]  M. Wheeler An Elliptic Collocation-Finite Element Method with Interior Penalties , 1978 .

[5]  Thomas J. R. Hughes,et al.  Large eddy simulation of turbulent channel flows by the variational multiscale method , 2001 .

[6]  Volker Gravemeier,et al.  Variational Multiscale Large Eddy Simulation of Turbulent Flow in a Diffuser , 2007 .

[7]  Parviz Moin,et al.  B-Spline Method and Zonal Grids for Simulations of Complex Turbulent Flows , 1997 .

[8]  Thomas J. R. Hughes,et al.  A new finite element formulation for computational fluid dynamics: III. The generalized streamline operator for multidimensional advective-diffusive systems , 1986 .

[9]  T. Hughes,et al.  Iterative finite element solutions in nonlinear solid mechanics , 1998 .

[10]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[11]  Thomas J. R. Hughes,et al.  Multiscale and Stabilized Methods , 2007 .

[12]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[13]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[14]  Victor M. Calo,et al.  Residual-based multiscale turbulence modeling: Finite volume simulations of bypass transition , 2005 .

[15]  P. Moin,et al.  Computational study on the internal layer in a diffuser , 2005, Journal of Fluid Mechanics.

[16]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics. X - The compressible Euler and Navier-Stokes equations , 1991 .

[17]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[18]  J. Szmelter Incompressible flow and the finite element method , 2001 .

[19]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[20]  Alessandro Reali,et al.  Isogeometric Analysis of Structural Vibrations , 2006 .

[21]  Javier Jiménez,et al.  A critical evaluation of the resolution properties of B-Spline and compact finite difference methods , 2001 .

[22]  Thomas J. R. Hughes,et al.  Energy transfers and spectral eddy viscosity in large-eddy simulations of homogeneous isotropic turbulence: Comparison of dynamic Smagorinsky and multiscale models over a range of discretizations , 2004 .

[23]  Victor M. Calo,et al.  The role of continuity in residual-based variational multiscale modeling of turbulence , 2007 .

[24]  John Kim,et al.  DIRECT NUMERICAL SIMULATION OF TURBULENT CHANNEL FLOWS UP TO RE=590 , 1999 .

[25]  T. Hughes,et al.  Large Eddy Simulation and the variational multiscale method , 2000 .

[26]  Thomas J. R. Hughes,et al.  The multiscale formulation of large eddy simulation: Decay of homogeneous isotropic turbulence , 2001 .

[27]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[28]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[29]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[30]  T. Hughes,et al.  The variational multiscale formulation of LES: Channel flow at Rer = 590 , 2002 .

[31]  T. Tezduyar Computation of moving boundaries and interfaces and stabilization parameters , 2003 .

[32]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[33]  Parviz Moin,et al.  Study of flow in a planar asymmetric diffuser using large-eddy simulation , 1999, Journal of Fluid Mechanics.

[34]  T. Hughes,et al.  Isogeometric Fluid–structure Interaction Analysis with Applications to Arterial Blood Flow , 2006 .

[35]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[36]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[37]  John K. Eaton,et al.  Experimental investigation of flow through an asymmetric plane diffuser , 2000 .

[38]  Javier Jiménez,et al.  Scaling of the velocity fluctuations in turbulent channels up to Reτ=2003 , 2006 .

[39]  D. Spalding A Single Formula for the “Law of the Wall” , 1961 .

[40]  T. Hughes,et al.  Sensitivity of the scale partition for variational multiscale LES of channel flow , 2004 .

[41]  Jurijs Bazilevs,et al.  Isogeometric analysis of turbulence and fluid -structure interaction , 2006 .