Antenna patterns of nonsinusoidal waves with the time variation of a Gaussian pulse. III

The development of antenna theory for nonsinusoidal electromagnetic waves has been based on the idealized rectangular pulse. In practice, an antenna that is designed to operate in the mode of an electric hertzian dipole would radiate a pulse that best approximates a Gaussian one when the driving current consists of a linear transient. The principle of radiation of nonsinusoidal electromagnetic waves with the time variation of Gaussian pulses is discussed. The properties of the Gaussian pulse are presented, i.e., the autocorrelation function, energy spectral density, and spectrum. Antenna patterns, such as peak-amplitude pattern, peak-power pattern, energy pattern, and slope pattern are derived for a Gaussian pulse received (or radiated) by a linear array antenna. Computer plots of the derived antenna patterns are presented that show a considerable improvement in the angular resolution capability over that of the antenna patterns that have been derived for a rectangular pulse. >