Three-Phase Co-assembly: In Situ Incorporation of Nanoparticles into Tunable, Highly Ordered, Porous Silica Films

We present a reproducible, one-pot colloidal co-assembly approach that results in large-scale, highly ordered porous silica films with embedded, uniformly distributed, accessible gold nanoparticles. The unique coloration of these inverse opal films combines iridescence with plasmonic effects. The coupled optical properties are easily tunable either by changing the concentration of added nanoparticles to the solution before assembly or by localized growth of the embedded Au nanoparticles upon exposure to tetrachloroauric acid solution, after colloidal template removal. The presence of the selectively absorbing particles furthermore enhances the hue and saturation of the inverse opals’ color by suppressing incoherent diffuse scattering. The composition and optical properties of these films are demonstrated to be locally tunable using selective functionalization of the doped opals.

[1]  Jinghua Teng,et al.  In Situ "Doping" Inverse Silica Opals with Size-Controllable Gold Nanoparticles for Refractive Index Sensing , 2013 .

[2]  Joanna Aizenberg,et al.  Combinatorial wetting in colour: an optofluidic nose. , 2012, Lab on a chip.

[3]  Joanna Aizenberg,et al.  Encoding complex wettability patterns in chemically functionalized 3D photonic crystals. , 2011, Journal of the American Chemical Society.

[4]  Andreas Stein,et al.  Tunable Colors in Opals and Inverse Opal Photonic Crystals , 2010 .

[5]  Andreas Stein,et al.  Recent Progress in Syntheses and Applications of Inverse Opals and Related Macroporous Materials Prepared by Colloidal Crystal Templating , 2010 .

[6]  R. Friend,et al.  Dye-sensitized solar cell based on a three-dimensional photonic crystal. , 2010, Nano letters.

[7]  Joanna Aizenberg,et al.  Assembly of large-area, highly ordered, crack-free inverse opal films , 2010, Proceedings of the National Academy of Sciences.

[8]  A. Chiappini,et al.  Fabrication and characterization of colloidal crystals infiltrated with metallic nanoparticles , 2010, OPTO.

[9]  A. Haes,et al.  Linear assembly of gold nanoparticle clusters via centrifugation. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[10]  A. Moshfegh,et al.  Nanoparticle catalysts , 2009 .

[11]  Fiona C. Meldrum,et al.  Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems , 2009 .

[12]  Chad A Mirkin,et al.  Rationally designed nanostructures for surface-enhanced Raman spectroscopy. , 2008, Chemical Society reviews.

[13]  Nicholas R. Denny,et al.  Morphological Control in Colloidal Crystal Templating of Inverse Opals, Hierarchical Structures, and Shaped Particles , 2008 .

[14]  M. Young,et al.  Photochemical mineralization of europium, titanium, and iron oxyhydroxide nanoparticles in the ferritin protein cage. , 2008, Inorganic chemistry.

[15]  W. Knoll,et al.  Structural and optical characterization of 3D binary colloidal crystal and inverse opal films prepared by direct co-deposition , 2008 .

[16]  J. Baumberg,et al.  Nanoparticle-tuned structural color from polymer opals. , 2007, Optics express.

[17]  Likui Wang,et al.  Fabrication of Crack-Free Colloidal Crystals Using a Modified Vertical Deposition Method , 2007 .

[18]  C. Perry,et al.  A novel approach to Au@SiO2 core-shell spheres , 2007 .

[19]  R. Vajtai,et al.  Room-temperature assembly of germanium photonic crystals through colloidal crystal templating , 2007 .

[20]  Dae Hong Jeong,et al.  Antimicrobial effects of silver nanoparticles. , 2007, Nanomedicine : nanotechnology, biology, and medicine.

[21]  R. Ravikrishna,et al.  Photocatalytic degradation of gaseous organic species on photonic band-gap titania. , 2006, Environmental science & technology.

[22]  N. Kotov,et al.  Inverted colloidal crystals as three-dimensional microenvironments for cellular co-cultures , 2006 .

[23]  Weiping Qian,et al.  In-situ incorporation of gold nanoparticles of desired sizes into three-dimensional macroporous matrixes. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[24]  Yi Wang,et al.  Gold-Nanoparticle-Infiltrated Polystyrene Inverse Opals: A Three-Dimensional Platform for Generating Combined Optical Properties , 2006 .

[25]  Zuocheng Zhou,et al.  Templating methods for preparation of porous structures , 2006 .

[26]  Elton Graugnard,et al.  Atomic layer deposition in porous structures: 3D photonic crystals , 2005 .

[27]  Robert P. H. Chang,et al.  Fabrication of inverted opal ZnO photonic crystals by atomic layer deposition , 2005 .

[28]  Luis M Liz-Marzán,et al.  Optical properties of nanoparticle-based metallodielectric inverse opals. , 2004, Small.

[29]  Chad A. Mirkin,et al.  Color My Nanoworld , 2004 .

[30]  S. Tolbert,et al.  Tungsten Nitride Inverse Opals by Atomic Layer Deposition , 2003 .

[31]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[32]  Mark E. Davis Ordered porous materials for emerging applications , 2002, Nature.

[33]  Frank Caruso,et al.  Gold-silica inverse opals by colloidal crystal templating , 2002 .

[34]  A. Fujishima,et al.  Metal-Coated Colloidal Crystal Film as Surface-Enhanced Raman Scattering Substrate† , 2002 .

[35]  A. Fujishima,et al.  Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor , 2002 .

[36]  L. Liz‐Marzán,et al.  Fully Accessible Gold Nanoparticles within Ordered Macroporous Solids , 2002 .

[37]  Osamu Sato,et al.  Fabrication of High-Quality Opal Films with Controllable Thickness , 2002 .

[38]  Andreas Stein,et al.  Colloidal crystal templating of three-dimensionally ordered macroporous solids: materials for photonics and beyond , 2001 .

[39]  C. Foss,et al.  Metal Nanoparticles: Synthesis, Characterization, and Applications , 2001 .

[40]  C. López,et al.  Synthesis and photonic bandgap characterization of polymer inverse opals , 2001 .

[41]  O. Velev,et al.  Structured Metallic Films for Optical and Spectroscopic Applications via Colloidal Crystal Templating , 2001 .

[42]  Ryōji Takahashi,et al.  High Surface-Area Silica with Controlled Pore Size Prepared from Nanocomposite of Silica and Citric Acid , 2000 .

[43]  Sanford A. Asher,et al.  Photonic Crystal Chemical Sensors: pH and Ionic Strength , 2000 .

[44]  G. Ozin,et al.  Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres , 2000, Nature.

[45]  Orlin D. Velev,et al.  Structured porous materials via colloidal crystal templating: from inorganic oxides to metals , 2000 .

[46]  Abraham M. Lenhoff,et al.  Colloidal crystals as templates for porous materials , 2000 .

[47]  Stephen Mann,et al.  Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization , 1999, Nature.

[48]  P. J. Ollivier,et al.  Ordered mesoporous polymers of tunable pore size from colloidal silica templates. , 1999, Science.

[49]  Michael J. Natan,et al.  Hydroxylamine Seeding of Colloidal Au Nanoparticles in Solution and on Surfaces , 1998 .

[50]  R. G. Freeman,et al.  Preparation and Characterization of Au Colloid Monolayers , 1995 .

[51]  J. Turkevich,et al.  Further studies on the synthesis of finely divided platinum , 1986 .

[52]  C. Brinker,et al.  Comparisons of sol-gel-derived thin films with monoliths in a multicomponent silicate glass system☆ , 1981 .

[53]  K. Aika,et al.  CHEMISORPTION AND CATALYTIC ACTIVITY OF A SET OF PLATINUM CATALYSTS , 1976 .

[54]  Shui-Tong Lee,et al.  Silver nanosheet-coated inverse opal film as a highly active and uniform SERS substrate , 2012 .

[55]  Paul V. Braun,et al.  Embedded cavities and waveguides in three-dimensional silicon photonic crystals , 2008 .

[56]  V. Hessel,et al.  Preferential CO oxidation over catalysts with well-defined inverse opal structure in microchannels , 2008 .

[57]  E. Graugnard,et al.  Atomic layer deposition in porous structures : 3 D photonic crystals , 2005 .

[58]  A. Yu,et al.  Fabrication of Polymer−Nanoparticle Composite Inverse Opals by a One-Step Electrochemical Co-deposition Process , 2004 .

[59]  Akira Fujishima,et al.  Fabrication of a metal-coated three-dimensionally ordered macroporous film and its application as a refractive index sensor. , 2002, Angewandte Chemie.