Investigation on structure optimization of crashworthiness of fiber reinforced polymers materials

[1]  P. H. Thornton,et al.  Crash energy management in composite automotive structures , 1988 .

[2]  Harold R. Lindman Analysis of Variance in Experimental Design , 1991 .

[3]  D. Hull,et al.  A unified approach to progressive crushing of fibre-reinforced composite tubes , 1991 .

[4]  G. L. Farley,et al.  Crushing Characteristics of Continuous Fiber-Reinforced Composite Tubes , 1992 .

[5]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[6]  Robert L. Taylor,et al.  A constitutive model for anisotropic damage in fiber-composites , 1995 .

[7]  R. H. Myers,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[8]  Athanasios G. Mamalis,et al.  Crashworthy capability of composite material structures , 1997 .

[9]  Daniel Coutellier,et al.  Multi-layered multi-material finite element for crashworthiness studies , 2000 .

[10]  J. M. Starbuck,et al.  Energy Absorption in Polymer Composites for Automotive Crashworthiness , 2002 .

[11]  Przemysław Kołakowski,et al.  The effect of selected parameters on ship collision results by dynamic FE simulations , 2003 .

[12]  Dimitrios E. Manolakos,et al.  Crashworthy characteristics of axially statically compressed thin-walled square CFRP composite tubes: experimental , 2004 .

[13]  Ren-Jye Yang,et al.  Metamodeling development for vehicle frontal impact simulation , 2001, DAC 2001.

[14]  Dimitrios E. Manolakos,et al.  On the response of thin-walled CFRP composite tubular components subjected to static and dynamic axial compressive loading: experimental , 2005 .

[15]  M. Liefvendahl,et al.  A study on algorithms for optimization of Latin hypercubes , 2006 .

[16]  Utilization of composite’s tensile properties for energy absorbing systems , 2006 .

[17]  Qing Li,et al.  Design optimization of regular hexagonal thin-walled columns with crashworthiness criteria , 2007 .

[18]  Wei Li,et al.  Multiobjective optimization of multi-cell sections for the crashworthiness design , 2008 .

[19]  Paolo Feraboli,et al.  Development of a Corrugated Test Specimen for Composite Materials Energy Absorption , 2008 .

[20]  José Daniel D. Melo,et al.  The effect of processing conditions on the energy absorption capability of composite tubes , 2008 .

[21]  Mostafa Rassaian,et al.  Crush energy absorption of composite channel section specimens , 2009 .

[22]  Mahmoud Reda Taha,et al.  A multi-objective optimization approach for design of blast-resistant composite laminates using carbon nanotubes , 2009 .

[23]  Xu Han,et al.  Multiobjective optimization for tapered circular tubes , 2011 .

[24]  Mostafa Rassaian,et al.  LS-DYNA MAT54 modeling of the axial crushing of a composite tape sinusoidal specimen , 2011 .

[25]  Siavash Talebi Taher,et al.  Energy absorption and failure response of silk/epoxy composite square tubes: Experimental , 2012 .

[26]  Singh Ramesh,et al.  Advanced composite sandwich structure design for energy absorption applications: Blast protection and crashworthiness , 2012 .

[27]  Giovanni Belingardi,et al.  Lightweight design and crash analysis of composite frontal impact energy absorbing structures , 2012 .

[28]  Yoshihiro Narita,et al.  Multi-objective optimization of curvilinear fiber shapes for laminated composite plates by using NSGA-II , 2013 .

[29]  Qiang Liu,et al.  Lightweight design of carbon twill weave fabric composite body structure for electric vehicle , 2013 .