Metamodel-Based Robust Simulation-Optimization: An Overview

Optimization of simulated systems is the goal of many techniques, but most of them assume known environments. Recently, “robust” methodologies accounting for uncertain environments have been developed. Robust optimization tackles problems affected by uncertainty, providing solutions that are in some sense insensitive to perturbations in the model parameters. Several alternative methods have been proposed for achieving robustness in simulation-based optimization problems, adopting different experimental designs and/or metamodeling techniques. This chapter reviews the current state of the art on robust optimization approaches based on simulated systems. First, we summarize robust Mathematical Programming. Then we discuss Taguchi’s approach introduced in the 1970s. Finally, we consider methods to tackle robustness using metamodels, and Kriging in particular. The proposed methodology uses Taguchi’s view of the uncertain world, but replaces his statistical techniques by Kriging. We illustrate the resulting methodology through basic inventory models.

[1]  Stefano Tarantola,et al.  Uncertainty in Industrial Practice , 2008 .

[2]  R. Narasimhan,et al.  Perspectives on risk management in supply chains , 2009 .

[3]  Melvyn Sim,et al.  The Price of Robustness , 2004, Oper. Res..

[4]  R. Al-Aomar,et al.  A robust simulation-based multicriteria optimization methodology , 2002, Proceedings of the Winter Simulation Conference.

[5]  Kwon-Hee Lee,et al.  A Global Robust Optimization Using Kriging Based Approximation Model , 2006 .

[6]  T. Cheng,et al.  Mean – variance analysis of the newsvendormodel with stockout cost , 2009 .

[7]  Yafeng Yin,et al.  Production , Manufacturing and Logistics Robust improvement schemes for road networks under demand uncertainty , 2009 .

[8]  Connie M. Borror,et al.  Robust Parameter Design: A Review , 2004 .

[9]  Javier García-González,et al.  Risk-averse profit-based optimal scheduling of a hydro-chain in the day-ahead electricity market , 2007, Eur. J. Oper. Res..

[10]  Emanuele Borgonovo,et al.  Global sensitivity analysis in inventory management , 2007 .

[11]  Raul Poler,et al.  Models for production planning under uncertainty: A review ☆ , 2006 .

[12]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[13]  Dimitris Bertsimas,et al.  A Robust Optimization Approach to Inventory Theory , 2006, Oper. Res..

[14]  P. W. Wilson,et al.  Sensitivity Analysis of Efficiency Scores: How to Bootstrap in Nonparametric Frontier Models , 1998 .

[15]  Jack P. C. Kleijnen Design and Analysis of Simulation Experiments , 2007 .

[16]  Gang Yu,et al.  Robust economic order quantity models , 1997, Eur. J. Oper. Res..

[17]  Ron S. Kenett,et al.  Achieving Robust Design from Computer Simulations , 2006 .

[18]  John A. Nelder,et al.  Robust Design via Generalized Linear Models , 2003 .

[19]  Paul H. Zipkin,et al.  Foundations of Inventory Management , 2000 .

[20]  R. H. Myers,et al.  Response Surface Alternatives to the Taguchi Robust Parameter Design Approach , 1992 .

[21]  Thomas J. Santner,et al.  The Design and Analysis of Computer Experiments , 2003, Springer Series in Statistics.

[22]  Douglas C. Montgomery,et al.  Response Surface Methodology: Process and Product Optimization Using Designed Experiments , 1995 .

[23]  Max D. Morris The Design and Analysis of Computer Experiments. Thomas J. Santner , Brian J. Williams , and William I. Notz , 2004 .

[24]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[25]  Xiaoping Du,et al.  The use of metamodeling techniques for optimization under uncertainty , 2001 .

[26]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[27]  Basem El‐Haik,et al.  Simulation-based lean six-sigma and design for six-sigma , 2006 .

[28]  Jack P. C. Kleijnen,et al.  Robust Optimization in Simulation: Taguchi and Krige Combined , 2009, INFORMS J. Comput..

[29]  Murat Kulahci,et al.  Conditional Value at Risk as a Measure for Waiting Time in Simulations of Hospital Units , 2010 .

[30]  Jon Craig Helton,et al.  Conceptual and computational basis for the quantification of margins and uncertainty. , 2009 .

[31]  Dimitris Bertsimas,et al.  A Robust Optimization Approach to Supply Chain Management , 2004, IPCO.

[32]  Murat Kulahci,et al.  Designing simulation experiments with controllable and uncontrollable factors for applications in healthcare , 2011 .

[33]  Emanuele Borgonovo,et al.  Sensitivity analysis with finite changes: An application to modified EOQ models , 2010, Eur. J. Oper. Res..

[34]  Enrique del Castillo,et al.  Robust parameter design optimization of simulation experiments using stochastic perturbation methods , 2011, J. Oper. Res. Soc..

[35]  Erwin Stinstra,et al.  Robust Optimization Using Computer Experiments , 2005, Eur. J. Oper. Res..

[36]  Guillermo Miró-Quesada,et al.  Two Approaches for Improving the Dual Response Method in Robust Parameter Design , 2004 .

[37]  Xi Chen,et al.  The effects of common random numbers on stochastic kriging metamodels , 2012, TOMC.

[38]  Berna Dengiz,et al.  Redesign of PCB production line with simulation and Taguchi design , 2009, Proceedings of the 2009 Winter Simulation Conference (WSC).

[39]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[40]  Bernhard Sendhoff,et al.  Robust Optimization - A Comprehensive Survey , 2007 .

[41]  Jack P. C. Kleijnen,et al.  A methodology for fitting and validating metamodels in simulation , 2000, Eur. J. Oper. Res..

[42]  Melvyn Sim,et al.  Constructing Risk Measures from Uncertainty Sets , 2009, Oper. Res..

[43]  Susan M. Sanchez,et al.  Robust design: seeking the best of all possible worlds , 2000, 2000 Winter Simulation Conference Proceedings (Cat. No.00CH37165).

[44]  Tae Hee Lee,et al.  Robust Design: An Overview , 2006 .

[45]  Jin Zhang,et al.  Methodology for determining the acceptability of system designs in uncertain environments , 2011, Eur. J. Oper. Res..

[46]  Manoj Kumar Tiwari,et al.  Optimization of the supply chain network: Simulation, Taguchi, and Psychoclonal algorithm embedded approach , 2010, Comput. Ind. Eng..

[47]  Arkadi Nemirovski,et al.  Selected topics in robust convex optimization , 2007, Math. Program..

[48]  Salvatore Cannella,et al.  Up-to-Date Supply Chain Management: The Coordinated (S, R) Order-Up-to , 2010, Heinz Nixdorf Symposium.

[49]  Thomas J. Goldsby,et al.  Supply chain risks: a review and typology , 2009 .

[50]  William I. Notz,et al.  DESIGNING COMPUTER EXPERIMENTS TO DETERMINE ROBUST CONTROL VARIABLES , 2004 .

[51]  Bernhard Sendhoff,et al.  Trade-Off between Performance and Robustness: An Evolutionary Multiobjective Approach , 2003, EMO.

[52]  Jürgen Branke,et al.  Efficient fitness estimation in noisy environments , 2001 .

[53]  Theodore T. Allen,et al.  Constructing Meta-Models for Computer Experiments , 2003 .

[54]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox , 2002 .

[55]  Zhe George Zhang,et al.  Technical Note - A Risk-Averse Newsvendor Model Under the CVaR Criterion , 2009, Oper. Res..

[56]  Dimitris Bertsimas,et al.  Robust Optimization for Unconstrained Simulation-Based Problems , 2010, Oper. Res..

[57]  Søren Nymand Lophaven,et al.  DACE - A Matlab Kriging Toolbox, Version 2.0 , 2002 .

[58]  Stefano Tarantola,et al.  Uncertainty Settings and Natures of Uncertainty , 2008 .

[59]  Jack P. C. Kleijnen,et al.  Methodology for Determining the Acceptability of Given Designs in Uncertain Environments , 2009 .

[60]  F. Fred Choobineh,et al.  A quantile-based approach to system selection , 2010, Eur. J. Oper. Res..

[61]  Dimitri N. Mavris,et al.  MODELING NOISE IN APPROXIMATION-BASED ROBUST DESIGN: A COMPARISON AND CRITICAL DISCUSSION , 1998 .

[62]  Jack P. C. Kleijnen,et al.  Kriging interpolation in simulation: a survey , 2004, Proceedings of the 2004 Winter Simulation Conference, 2004..

[63]  Murat Kulahci,et al.  Simulation-based cycle-time quantile estimation in manufacturing settings employing non-FIFO dispatching policies , 2009, J. Simulation.

[64]  Miguel A. Sordo,et al.  Comparing tail variabilities of risks by means of the excess wealth order , 2009 .

[65]  Enrique Del Castillo,et al.  Process Optimization: A Statistical Approach , 2007 .

[66]  Jack P. C. Kleijnen,et al.  Robust Optimization in Simulation: Taguchi and Response Surface Methodology , 2008 .