Identification of Digitally Modulated Signals-Status and Challenges

there are many methods for the digital modulation identification task. Despite of the method or approach, there is some kind of signal feature extraction represented by sets of parameters to make the identification possible. This paper provides the study of the parameters of some important identification techniques used for digitally modulated signals identification.

[1]  Sattar B. Sadkhan,et al.  A proposed digital modulated signal identification based on pattern recognition , 2010, 2010 7th International Multi- Conference on Systems, Signals and Devices.

[2]  Lawrence R. Rabiner,et al.  Multirate Digital Signal Processing , 2019 .

[3]  M. B. Menhaj,et al.  Amplitude-based neuro-classifier for classification of digital quadrature and staggered modulations , 2001, IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222).

[4]  Samir S. Soliman,et al.  Signal classification using statistical moments , 1992, IEEE Trans. Commun..

[5]  S. Taira,et al.  Automatic classification of analogue modulation signals by statistical parameters , 1999, MILCOM 1999. IEEE Military Communications. Conference Proceedings (Cat. No.99CH36341).

[6]  Sattar B. Sadkhan,et al.  Proposed Simulation of Modulation Identification Based On Wavelet Transform , 2009 .

[7]  Richard Kronland-Martinet,et al.  Reading and Understanding Continuous Wavelet Transforms , 1989 .

[8]  M. R. Moniri,et al.  Automatic modulation recognition and classification for digital modulated signals based on ANN algorithms , 2016 .

[9]  I. Daubechies,et al.  Two-scale difference equations II. local regularity, infinite products of matrices and fractals , 1992 .

[10]  F. F. Liedtke,et al.  Computer simulation of an automatic classification procedure for digitally modulated communication signals with unknown parameters , 1984 .

[11]  Alfred O. Hero,et al.  Digital modulation classification using power moment matrices , 1998, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP '98 (Cat. No.98CH36181).

[12]  Alfred O. Hero,et al.  Moment matrices for recognition of spatial pattern in noisy images , 1997, Proceedings of International Conference on Image Processing.

[13]  Janet Aisbett Automatic modulation recognition using time domain parameters , 1987 .

[14]  W. J. Williams,et al.  Moments and Moment Matrices for Invariant Classi cation of Noise Contaminated Spatial Pattern , 1997 .

[15]  Friedrich K. Jondral,et al.  Automatic classification of high frequency signals , 1985 .

[16]  D. Chu Phase digitizing sharpens timing measurements , 1988, IEEE Spectrum.

[17]  J. Sills Maximum-likelihood modulation classification for PSK/QAM , 1999, MILCOM 1999. IEEE Military Communications. Conference Proceedings (Cat. No.99CH36341).

[18]  S. Biyiksiz,et al.  Multirate digital signal processing , 1985, Proceedings of the IEEE.