An automatic methodology for analyzing sorting level of rock particles

[1]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[2]  Keegan Kang,et al.  Feature Representation in Convolutional Neural Networks , 2015, ArXiv.

[3]  Nick Clarke,et al.  Classification of Gold-Bearing Particles Using Visual Cues and Cost-Sensitive Machine Learning , 2015, Mathematical Geosciences.

[4]  Andrew Zisserman,et al.  Very Deep Convolutional Networks for Large-Scale Image Recognition , 2014, ICLR.

[5]  Gordon R. Osinski,et al.  A methodology for the semi‐automatic digital image analysis of fragmental impactites , 2014 .

[6]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[7]  Rob Fergus,et al.  Visualizing and Understanding Convolutional Networks , 2013, ECCV.

[8]  Christian Koeberl,et al.  Clast size distribution and quantitative petrography of shocked and unshocked rocks from the El'gygytgyn impact structure , 2013 .

[9]  Marc'Aurelio Ranzato,et al.  Large Scale Distributed Deep Networks , 2012, NIPS.

[10]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[11]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[12]  R. K. Agrawal,et al.  First and Second Order Statistics Features for Classification of Magnetic Resonance Brain Images , 2012 .

[13]  Andrew Y. Ng,et al.  Learning Feature Representations with K-Means , 2012, Neural Networks: Tricks of the Trade.

[14]  Honglak Lee,et al.  An Analysis of Single-Layer Networks in Unsupervised Feature Learning , 2011, AISTATS.

[15]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[16]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Honglak Lee,et al.  Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations , 2009, ICML '09.

[18]  N. Woodcock,et al.  Quantifying fault breccia geometry : Dent Fault, NW England , 2008 .

[19]  David Benavente,et al.  Petrographic quantification of brecciated rocks by image analysis. Application to the interpretation of elastic wave velocities , 2007 .

[20]  Giovanni B. Crosta,et al.  Fragmentation in the Val Pola rock avalanche, Italian Alps , 2007 .

[21]  Michael Denis Higgins,et al.  Quantitative Textural Measurements in Igneous and Metamorphic Petrology , 2006 .

[22]  Veerendra Singh,et al.  Application of image processing and radial basis neural network techniques for ore sorting and ore classification , 2005 .

[23]  U. Raff,et al.  Automated estimation of rock fragment distributions using computer vision and its application in mining , 2005 .

[24]  Vladimir Kolmogorov,et al.  "GrabCut": interactive foreground extraction using iterated graph cuts , 2004, ACM Trans. Graph..

[25]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  J. Chermant,et al.  Image analysis and mathematical morphology for civil engineering materials , 2001 .

[27]  R. Heilbronner Automatic grain boundary detection and grain size analysis using polarization micrographs or orientation images , 2000 .

[28]  Maurice E. Tucker,et al.  Sedimentary rocks in the field , 1996 .

[29]  Xing-Qiang Wu,et al.  A segmentation method for multi-connected particle delineation , 1992, [1992] Proceedings IEEE Workshop on Applications of Computer Vision.