Interval Subroutine Library Mission

We propose the collection, standardization, and distribution of a full-featured, production quality library for reliable scientific computing with routines using interval techniques for use by the wide community of applications developers.

[1]  Jun Yu,et al.  Interval Testing Strategies Applied to COSY's Interval and Taylor Model Arithmetic , 2003, Numerical Software with Result Verification.

[2]  John D. Pryce Algorithm 789: SLTSTPAK: a test package for Sturm-Liouville solvers , 1999, TOMS.

[3]  Jack Dongarra,et al.  LAPACK Users' Guide, 3rd ed. , 1999 .

[4]  Walter Krämer,et al.  C-XSC 2.0: A C++ Library for Extended Scientific Computing , 2003, Numerical Software with Result Verification.

[5]  T. E. Hull,et al.  Comparing Numerical Methods for Ordinary Differential Equations , 1972 .

[6]  William H. Press,et al.  Numerical Recipes in FORTRAN - The Art of Scientific Computing, 2nd Edition , 1987 .

[7]  Ulrich Kulisch,et al.  Numerical Toolbox for Verified Computing I: Basic Numerical Problems Theory, Algorithms, and Pascal-Xsc Programs , 1994 .

[8]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[9]  Donald E. Knuth,et al.  Literate Programming , 1984, Comput. J..

[10]  O. Knüppel,et al.  PROFIL/BIAS—A fast interval library , 1994, Computing.

[11]  Eric M. Burke,et al.  Java Extreme Programming Cookbook , 2003 .

[12]  John D. Pryce,et al.  Interval Arithmetic with Containment Sets , 2006, Computing.

[13]  Guillaume Melquiond,et al.  The design of the Boost interval arithmetic library , 2006, Theor. Comput. Sci..

[14]  A. Neumaier Interval methods for systems of equations , 1990 .

[15]  Ulrich W. Kulisch,et al.  Hardware Support for Interval Arithmetic , 2006, Reliab. Comput..

[16]  William H. Press,et al.  Numerical Recipes in Fortran 77: The Art of Scientific Computing 2nd Editionn - Volume 1 of Fortran Numerical Recipes , 1992 .

[17]  Ulrich W. Kulisch,et al.  C++ Toolbox for Verified Scientific Computing I: Basic Numerical Problems , 1997 .

[18]  G. Corliss,et al.  C-Xsc: A C++ Class Library for Extended Scientific Computing , 1993 .

[19]  James J. Horning Software fundamentals: collected papers by David L. Parnas , 2001, SOEN.

[20]  Jan Chomicki,et al.  Hippo: A System for Computing Consistent Answers to a Class of SQL Queries , 2004, EDBT.

[21]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[22]  W. M. Lioen,et al.  Test set for IVP solvers , 1996 .

[23]  Wolfram Luther,et al.  Numerical Software with Result Verification , 2004, Lecture Notes in Computer Science.

[24]  Sun Fire V20z Sun Microsystems , 1996 .

[25]  Guillaume Melquiond,et al.  The Boost Interval Arithmetic Library , 2003 .

[26]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[27]  Guillaume Melquiond,et al.  A Proposal to add Interval Arithmetic to the C++ Standard Library , 2006, Reliable Implementation of Real Number Algorithms.

[28]  William H. Press,et al.  Book-Review - Numerical Recipes in Pascal - the Art of Scientific Computing , 1989 .

[29]  Kent L. Beck,et al.  Test-driven Development - by example , 2002, The Addison-Wesley signature series.

[30]  John D. Pryce,et al.  A test package for Sturm-Liouville solvers , 1999, TOMS.

[31]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[32]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[33]  Francesca Mazzia,et al.  Test Set for Initial Value Problem Solvers , 2003 .

[34]  Walter Krämer,et al.  FILIB++, a fast interval library supporting containment computations , 2006, TOMS.