Stochastic estimation of biogeochemical parameters of a 3D ocean coupled physical–biogeochemical model: Twin experiments

Abstract In a 3D ocean coupled physical–biogeochemical model, implemented on the North Atlantic at 1/4° and including six biogeochemical variables, three parameters (phytoplankton maximal growth rate, phytoplankton mortality rate and zooplankton maximal grazing rate) are assumed to be stochastic and have regional variations. Ensemble simulations (200 members, lasting 30 days during the spring bloom) show that the phytoplankton concentration is sensitive to the parameterization, with strong spatial heterogeneity, combined to a nonlinear and non-Gaussian behavior. Within the Kalman filter theory, parameter estimation can be done, in the framework of optimal estimate with Gaussian assumptions and reduced rank approximation, when the state vector is augmented with the uncertain parameters. Twin data assimilation experiments, using surface phytoplankton as observations, were performed either in the linear framework or introducing a nonlinear local transformation (anamorphosis). The anamorphosis is performed using a piecewise linear change of variables (applied to all biogeochemical quantities) remapping the percentiles of the empirical marginal distribution provided by the ensemble on the percentiles of the Gaussian distribution. Nonlinear parameter estimation performed better than linear estimation: on the 39 estimated parameters, there is a reduction in the variance obtained with the nonlinear analysis, compared to the variance obtained with the linear analysis, except for 2 parameters. The reduction is better than 60% in 80% of these cases. The anamorphosis is also useful to define an objective error norm for the biogeochemical variables.

[1]  K. Rose,et al.  Challenges for a new generation of marine ecosystem models: Overview of the Advances in Marine Ecosystem Modelling Research (AMEMR) Symposium, 23–26 June 2008, Plymouth UK , 2010 .

[2]  Jean-Michel Brankart,et al.  Characterization of mixing errors in a coupled physical biogeochemical model of the North Atlantic: implications for nonlinear estimation using Gaussian anamorphosis , 2010 .

[3]  Jean-Michel Brankart,et al.  Improved Turbulent Air–Sea Flux Bulk Parameters for Controlling the Response of the Ocean Mixed Layer: A Sequential Data Assimilation Approach , 2009 .

[4]  Thierry Penduff,et al.  Impact of partial steps and momentum advection schemes in a global ocean circulation model at eddy-permitting resolution , 2006 .

[5]  Weitao Zhang,et al.  Addressing equifinality and uncertainty in eutrophication models , 2008 .

[6]  Watson W. Gregg,et al.  Phytoplankton and iron: validation of a global three-dimensional ocean biogeochemical model , 2003 .

[7]  S. Doney,et al.  An intermediate complexity marine ecosystem model for the global domain , 2001 .

[8]  S. Doney,et al.  Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean , 2001 .

[9]  Stéphane Blain,et al.  An ecosystem model of the global ocean including Fe, Si, P colimitations , 2003 .

[10]  A. Longhurst Seasonal cycles of pelagic production and consumption , 1995 .

[11]  C. Davis,et al.  Normal versus gamma: stochastic models of copepod molting rate , 2007 .

[12]  Svetlana N. Losa,et al.  3D ecosystem modelling in the North Atlantic: Relative impacts of physical and biological parameterizations , 2006 .

[13]  Controlling atmospheric forcing parameters of global ocean models: sequential assimilation of sea surface Mercator-Ocean reanalysis data , 2009 .

[14]  Dinh Tuan Pham,et al.  Filtres de Kaiman singuliers volutifs pour l'assimilation de donnes en ocanographie , 1998 .

[15]  George B. Arhonditsis,et al.  Structural changes in lake functioning induced from nutrient loading and climate variability , 2009 .

[16]  Thomas R. Anderson,et al.  Parameter optimisation techniques and the problem of underdetermination in marine biogeochemical models , 2010 .

[17]  P. Delecluse,et al.  OPA 8.1 Ocean General Circulation Model reference manual , 1998 .

[18]  V. Garçon,et al.  Use of SeaWiFS data for light availability and parameter estimation of a phytoplankton production model of the Bay of Biscay , 2007 .

[19]  I. Charpentier,et al.  Can biogeochemical fluxes be recovered from nitrate and chlorophyll data? A case study assimilating data in the Northwestern Mediterranean Sea at the JGOFS-DYFAMED station , 2003 .

[20]  Pierre F. J. Lermusiaux,et al.  Uncertainty estimation and prediction for interdisciplinary ocean dynamics , 2006, J. Comput. Phys..

[21]  Katja Fennel,et al.  Sequential data assimilation applied to a physical-biological model for the Bermuda Atlantic time series station , 2010 .

[22]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[23]  Laurent Bertino,et al.  Application of the Gaussian anamorphosis to assimilation in a 3-D coupled physical-ecosystem model of the North Atlantic with the EnKF: a twin experiment , 2009 .

[24]  M. Dowd Estimating parameters for a stochastic dynamic marine ecological system , 2011 .

[25]  A. Longhurst Ecological Geography of the Sea , 1998 .

[26]  G. Caniaux,et al.  A four‐dimensional mesoscale map of the spring bloom in the northeast Atlantic (POMME experiment): Results of a prognostic model , 2005 .

[27]  C. Stow,et al.  Skill Assessment for Coupled Biological/Physical Models of Marine Systems. , 2009, Journal of marine systems : journal of the European Association of Marine Sciences and Techniques.

[28]  G. Evensen,et al.  Sequential Data Assimilation Techniques in Oceanography , 2003 .

[29]  Jean-Michel Brankart,et al.  On the key role of nutrient data to constrain a coupled physical-biogeochemical assimilative model of the North Atlantic Ocean , 2009 .

[30]  F. Carlotti,et al.  Converting copepod vital rates into units appropriate for biogeochemical models , 2010 .

[31]  Svetlana N. Losa,et al.  Weak constraint parameter estimation for a simple ocean ecosystem model: what can we learn about the model and data? , 2004 .

[32]  Scott C. Doney,et al.  Assessment of skill and portability in regional marine biogeochemical models : Role of multiple planktonic groups , 2007 .

[33]  Jean-Michel Brankart,et al.  A truncated Gaussian filter for data assimilation with inequality constraints: Application to the hydrostatic stability condition in ocean models , 2008 .

[34]  Jens Schröter,et al.  Sequential weak constraint parameter estimation in an ecosystem model , 2003 .

[35]  Andreas Oschlies,et al.  Towards an assessment of simple global marine biogeochemical models of different complexity , 2010 .

[36]  Jean-Michel Brankart,et al.  Efficient Parameterization of the Observation Error Covariance Matrix for Square Root or Ensemble Kalman Filters: Application to Ocean Altimetry , 2009 .

[37]  Jens Schröter,et al.  A comparison of error subspace Kalman filters , 2005 .

[38]  Watson W. Gregg,et al.  Skill Assessment in Ocean Biological Data Assimilation , 2009 .

[39]  Jacques Verron,et al.  A singular evolutive extended Kalman filter for data assimilation in oceanography , 1998 .

[40]  H. Ducklow,et al.  A nitrogen-based model of plankton dynamics in the oceanic mixed layer , 1990 .