Periodicity in the cohomology of finite general linear groups via $q$-divided powers

We show that $\bigoplus_{n \ge 0} {\mathrm H}^t({\bf GL}_n({\bf F}_q), {\bf F}_\ell)$ canonically admits the structure of a module over the $q$-divided power algebra (assuming $q$ is invertible in ${\bf F}_{\ell}$), and that, as such, it is free and (for $q \neq 2$) generated in degrees $\le t$. As a corollary, we show that the cohomology of a finitely generated ${\bf VI}$-module in non-describing characteristic is eventually periodic in $n$. We apply this to obtain a new result on the cohomology of unipotent Specht modules.

[1]  Anssi Lahtinen,et al.  Modular characteristic classes for representations over finite fields , 2016, 1607.01052.

[2]  Steven V. Sam,et al.  Jack Polynomials as Fractional Quantum Hall States and the Betti Numbers of the (k + 1)-Equals Ideal , 2013, 1303.4126.

[3]  Hendrik Maazen Homology stability for the general linear group , 1979 .

[4]  Steven V. Sam Symmetric quivers, invariant theory, and saturation theorems for the classical groups , 2010, 1009.3040.

[5]  Combinatorial realizations of crystals via torus actions on quiver varieties , 2012, 1205.5847.

[6]  Steven V. Sam,et al.  The cone of Betti tables over three non-collinear points in the plane , 2014, 1501.00207.

[7]  Rohit Nagpal VI-modules in nondescribing characteristic, part I , 2017, 1709.07591.

[8]  G. James,et al.  Representations of general linear groups , 1984 .

[9]  Steven V. Sam,et al.  Poset Structures in Boij–Söderberg Theory , 2010, 1010.2663.

[10]  Nathalie Wahl,et al.  Homological stability for classical groups , 2018, Transactions of the American Mathematical Society.

[11]  D. Quillen On the Cohomology and K-Theory of the General Linear Groups Over a Finite Field , 1972 .

[12]  Rohit Nagpal,et al.  VI-modules in non-describing characteristic, part II , 2018, Journal für die reine und angewandte Mathematik.

[13]  W. Kallen Homology stability for linear groups , 1980 .

[14]  Wee Liang Gan,et al.  Bounds on Homological Invariants of VI-Modules , 2017, Michigan Mathematical Journal.

[15]  Steven V. Sam,et al.  Gröbner methods for representations of combinatorial categories , 2014, 1409.1670.

[16]  Steven V. Sam,et al.  Positivity theorems for solid-angle polynomials , 2009, 0906.4031.

[17]  S. D. Cutkosky,et al.  Singularities and Homological Aspects of Commutative Algebra , 2020 .

[18]  M. Nakaoka Decomposition Theorem for Homology Groups of Symmetric Groups , 1960 .

[19]  Robert P. Laudone Representation stability for sequences of 0-Hecke modules , 2021, Algebraic Combinatorics.

[20]  Leonard Evens,et al.  Cohomology of groups , 1991, Oxford mathematical monographs.

[21]  Steven V. Sam JACOBI-TRUDI DETERMINANTS AND CHARACTERS OF MINIMAL AFFINIZATIONS , 2013, 1307.6630.

[22]  Rohit Nagpal FI-modules and the cohomology of modular representations of symmetric groups , 2015, 1505.04294.

[23]  A. Dold Decomposition Theorems for S(n)-Complexes , 1962 .

[24]  Steven V. Sam Orthosymplectic Lie superalgebras, Koszul duality, and a complete intersection analogue of the Eagon–Northcott complex , 2013, 1312.2255.

[25]  Steven V. Sam,et al.  Moduli of Abelian Varieties, Vinberg θ-Groups, and Free Resolutions , 2012, 1203.2575.