Efficient gluing of numerical continuation and a multiple solution method for elliptic PDEs
暂无分享,去创建一个
[1] Michael P. Rogers. Python Tutorial , 2009 .
[2] J. Cahn,et al. A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .
[3] Hannes Uecker,et al. Numerical Results for Snaking of Patterns over Patterns in Some 2D Selkov-Schnakenberg Reaction-Diffusion Systems , 2013, SIAM J. Appl. Dyn. Syst..
[4] Robert P. Cassoni,et al. Aircraft Anti-Icing and De-Icing Techniques and Modeling , 1996 .
[5] P. K. Banerjee,et al. Boundary element methods in engineering science , 1981 .
[6] Christian Kuehn,et al. From First Lyapunov Coefficients to Maximal Canards , 2010, Int. J. Bifurc. Chaos.
[7] Andrew M. Stuart,et al. The Moment Map: Nonlinear Dynamics of Density Evolution via a Few Moments , 2006, SIAM J. Appl. Dyn. Syst..
[8] C. Peskin. The immersed boundary method , 2002, Acta Numerica.
[9] Yongxin Li,et al. A Minimax Method for Finding Multiple Critical Points and Its Applications to Semilinear PDEs , 2001, SIAM J. Sci. Comput..
[10] Willy Govaerts,et al. Numerical computation of bifurcations in large equilibrium systems in matlab , 2014, J. Comput. Appl. Math..
[11] L. M. Berkovich. The Generalized Emden-Fowler Equation , 1997 .
[12] Y. Choi,et al. A mountain pass method for the numerical solution of semilinear elliptic problems , 1993 .
[13] I. Aranson,et al. The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.
[14] Jianxin Zhou,et al. Algorithms and Visualization for solutions of nonlinear Elliptic equations , 2000, Int. J. Bifurc. Chaos.
[15] H. B. Keller,et al. NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .
[16] W. Ni. CHAPTER 3 - Qualitative Properties of Solutions to Elliptic Problems , 2004 .
[17] Wim Vanroose,et al. Numerical Bifurcation Study of Superconducting Patterns on a Square , 2011, SIAM J. Appl. Dyn. Syst..
[18] Bernd Krauskopf,et al. The geometry of mixed-mode oscillations in the Olsen model for peroxidase-oxidase reaction , 2009 .
[19] Bernd Krauskopf,et al. Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .
[20] Michael R. Osborne,et al. Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.
[21] Tuckerman,et al. Symmetry-breaking bifurcations in one-dimensional excitable media. , 1992, Physical review. A, Atomic, molecular, and optical physics.
[22] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[23] C. D. Boor,et al. Recent Advances in Numerical Analysis. , 1982 .
[24] Björn Sandstede,et al. A numerical toolbox for homoclinic bifurcation analysis , 1996 .
[25] Stefan Heinrich,et al. Multilevel Monte Carlo Methods , 2001, LSSC.
[26] Paul C. Fife,et al. Dynamics of Layered Interfaces Arising from Phase Boundaries , 1988 .
[27] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[28] Goong Chen,et al. A high-linking algorithm for sign-changing solutions of semilinear elliptic equations , 1999 .
[29] Guido Van Rossum,et al. Python Tutorial , 1999 .
[30] Wei-Ming Ni,et al. Large amplitude stationary solutions to a chemotaxis system , 1988 .
[31] M. Gurtin. Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .
[32] Daniele Avitabile,et al. Computation of planar patterns and their stability , 2008 .
[33] Frank Schilder,et al. Recipes for Continuation , 2013, Computational science and engineering.
[34] R. Seydel. Practical Bifurcation and Stability Analysis , 1994 .
[35] E. Allgower,et al. Introduction to Numerical Continuation Methods , 1987 .
[36] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[37] Fred Wubs,et al. Numerical Bifurcation Methods and their Application to Fluid Dynamics: Analysis beyond Simulation , 2012 .
[38] Ziqing Xie,et al. On Finding Multiple Solutions to a Singularly Perturbed Neumann Problem , 2012, SIAM J. Sci. Comput..
[39] Tamara G. Kolda,et al. An overview of the Trilinos project , 2005, TOMS.
[40] Some generalizations of the Caginalp phase-field system , 2009 .
[41] Kenneth Eriksson,et al. Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .
[42] Willy Govaerts,et al. Numerical methods for bifurcations of dynamical equilibria , 1987 .
[43] L. Tuckerman,et al. Bifurcation Analysis for Timesteppers , 2000 .
[44] Bernd Krauskopf,et al. Computing Geodesic Level Sets on Global (Un)stable Manifolds of Vector Fields , 2003, SIAM J. Appl. Dyn. Syst..
[45] H. Uecker,et al. pde2path - version 2.0: faster FEM, multi-parameter continuation, nonlinear boundary conditions, and periodic domains - a short manual , 2014, 1409.3119.
[46] A. Spence,et al. Continuation and Bifurcations: Numerical Techniques and Applications , 1990 .
[47] Thomas F. Fairgrieve,et al. AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .
[48] G. Samaey,et al. DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations , 2001 .
[49] M. Schmeits,et al. Application of continuation methods in physical oceanography , 1999 .
[50] Serafim Rodrigues,et al. On the numerical Continuation of Isolas of Equilibria , 2012, Int. J. Bifurc. Chaos.
[51] Jianxin Zhou,et al. On homotopy continuation method for computing multiple solutions to the Henon equation , 2008 .
[52] W. Mccrea. An Introduction to the Study of Stellar Structure , 1939, Nature.
[53] Alain Miranville,et al. The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials , 2010 .
[54] T. Bartsch,et al. Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries , 2012, 1208.5892.
[55] Robert Cimrman. SfePy - Write Your Own FE Application , 2014, ArXiv.
[56] Yongxin Li,et al. Convergence Results of a Local Minimax Method for Finding Multiple Critical Points , 2002, SIAM J. Sci. Comput..
[57] Edgar Knobloch,et al. To Snake or Not to Snake in the Planar Swift-Hohenberg Equation , 2010, SIAM J. Appl. Dyn. Syst..
[58] Louis A. Romero,et al. Bifurcation Tracking Algorithms and Software for Large Scale Applications , 2005, Int. J. Bifurc. Chaos.
[59] Wei-Ming Ni,et al. DIFFUSION, CROSS-DIFFUSION, AND THEIR SPIKE-LAYER STEADY STATES , 1998 .
[60] Juncheng Wei,et al. An optimal bound on the number of interior spike solutions for Lin-Ni-Takagi problem , 2012, 1209.2824.
[61] Björn Sandstede,et al. Computing absolute and essential spectra using continuation , 2007 .
[62] E. J. Doedel,et al. AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .
[63] W. D. Evans,et al. PARTIAL DIFFERENTIAL EQUATIONS , 1941 .
[64] James A. Warren,et al. FiPy: Partial Differential Equations with Python , 2009, Computing in Science & Engineering.
[65] D. Ter Haar,et al. Collected Papers of L. D. Landau , 1965 .
[66] M. Grasselli,et al. Long Time Behavior of Solutions to the Caginalp System with Singular Potential , 2006 .
[67] Willy Govaerts,et al. MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.
[68] F. Lin,et al. On the number of interior peak solutions for a singularly perturbed Neumann problem , 2007 .
[69] Christian Kuehn,et al. Deterministic Continuation of Stochastic Metastable Equilibria via Lyapunov Equations and Ellipsoids , 2011, SIAM J. Sci. Comput..
[70] Björn Sandstede,et al. Snakes, Ladders, and Isolas of Localized Patterns , 2009, SIAM J. Math. Anal..
[71] H. B. Keller. Global Homotopies and Newton Methods , 1978 .
[72] Jianxin Zhou,et al. A Local Minimax-Newton Method for Finding Multiple Saddle Points with Symmetries , 2004, SIAM J. Numer. Anal..
[73] R. Seydel,et al. Bifurcation: Analysis, Algorithms, Applications , 1987 .
[74] J. W. Thomas. Numerical Partial Differential Equations: Finite Difference Methods , 1995 .
[75] Claudia Wulff,et al. Numerical Continuation of Symmetric Periodic Orbits , 2006, SIAM J. Appl. Dyn. Syst..
[76] H. Keller. The Bordering Algorithm and Path Following Near Singular Points of Higher Nullity , 1983 .
[77] David J. B. Lloyd,et al. Isolas of 2-Pulse Solutions in Homoclinic Snaking Scenarios , 2011 .
[78] Barkley,et al. Linear stability analysis of rotating spiral waves in excitable media. , 1992, Physical review letters.
[79] Jianxin Zhou,et al. A local min-max-orthogonal method for finding multiple solutions to noncooperative elliptic systems , 2010, Math. Comput..
[80] J. A. Kuznecov. Elements of applied bifurcation theory , 1998 .
[81] J. Serrin,et al. Non-existence of positive solutions of Lane-Emden systems , 1996 .
[82] Matthias Abend. Continuation And Bifurcations Numerical Techniques And Applications , 2016 .
[83] Eugene Isaacson,et al. Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Russell) , 1989, SIAM Rev..
[84] Robert D. Russell,et al. COLSYS - - A Collocation Code for Boundary - Value Problems , 1978, Codes for Boundary-Value Problems in Ordinary Differential Equations.
[85] Frank Schilder,et al. Numerical Bifurcation of Hamiltonian Relative Periodic Orbits , 2009, SIAM J. Appl. Dyn. Syst..
[86] R. LeVeque. Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .
[87] H. Keller. Isolas and Perturbed Bifurcation Theory , 2017 .
[88] D. Gottlieb,et al. Numerical analysis of spectral methods , 1977 .
[89] Frank Schilder,et al. Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..
[90] G. Caginalp. An analysis of a phase field model of a free boundary , 1986 .
[91] J. Jost. Riemannian geometry and geometric analysis , 1995 .
[92] John Guckenheimer,et al. A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.
[93] U. Thiele,et al. TIME INTEGRATION AND STEADY-STATE CONTINUATION METHOD FOR LUBRICATION EQUATIONS , 2009 .
[94] Uwe Thiele,et al. Time Integration and Steady-State Continuation for 2d Lubrication Equations , 2009, SIAM J. Appl. Dyn. Syst..
[95] B. Krauskopf,et al. Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems , 2007 .
[96] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[97] Michael E. Henderson,et al. Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.
[98] Wolfgang Bangerth,et al. Quo Vadis, Scientific Software? , 2014 .
[99] L. R. Koenig,et al. A Short Course in Cloud Physics , 1979 .
[100] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[101] Scott G. McCalla,et al. Snaking of radial solutions of the multi-dimensional Swift–Hohenberg equation: A numerical study , 2010 .
[102] Karen C. Hegener,et al. Engineering and applied sciences , 1975 .
[103] Gábor Stépán,et al. Continuation of Bifurcations in Periodic Delay-Differential Equations Using Characteristic Matrices , 2006, SIAM J. Sci. Comput..
[104] Wolf-Jürgen Beyn,et al. The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .
[105] J. Dawes,et al. Snaking and isolas of localised states in bistable discrete lattices , 2009, 0910.0294.
[106] Daniel Wetzel,et al. pde2path - A Matlab package for continuation and bifurcation in 2D elliptic systems , 2012, 1208.3112.
[107] Alan R. Champneys,et al. Localized Hexagon Patterns of the Planar Swift-Hohenberg Equation , 2008, SIAM J. Appl. Dyn. Syst..