Efficient gluing of numerical continuation and a multiple solution method for elliptic PDEs

Numerical continuation calculations for ordinary differential equations (ODEs) are, by now, an established tool for bifurcation analysis in dynamical systems theory as well as across almost all natural and engineering sciences. Although several excellent standard software packages are available for ODEs, there are - for good reasons - no standard numerical continuation toolboxes available for partial differential equations (PDEs), which cover a broad range of different classes of PDEs automatically. A natural ach to this problem is to look for efficient gluing computation approaches, with independent components developed by researchers in numerical analysis, dynamical systems, scientific computing and mathematical modeling. In this paper, we shall study several elliptic PDEs (Lane-Emden-Fowler, Lane-Emden-Fowler with microscopic force, Caginalp) via the numerical continuation software pde2path and develop a gluing component to determine a set of starting solutions for the continuation by exploiting the variational structures of the PDEs. In particular, we solve the initialization problem of numerical continuation for PDEs via a minimax algorithm to find multiple unstable solution. Furthermore, for the Caginalp system, we illustrate the efficient gluing link of pde2path to the underlying mesh generation and the FEM MatLab pdetoolbox. Even though the approach works efficiently due to the high-level programming language and without developing any new algorithms, we still obtain interesting bifurcation diagrams and directly applicable conclusions about the three elliptic PDEs we study, in particular with respect to symmetry-breaking. In particular, we show for a modified Lane-Emden-Fowler equation with an asymmetric microscopic force, how a fully connected bifurcation diagram splits up into C-shaped isolas on which localized pattern deformation appears towards two different regimes. We conclude with a section on future software development issues that would be helpful to be addressed to simplify interfaces to allow for more efficient, time-saving, gluing computation for dynamical systems analysis of PDEs in the near future.

[1]  Michael P. Rogers Python Tutorial , 2009 .

[2]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[3]  Hannes Uecker,et al.  Numerical Results for Snaking of Patterns over Patterns in Some 2D Selkov-Schnakenberg Reaction-Diffusion Systems , 2013, SIAM J. Appl. Dyn. Syst..

[4]  Robert P. Cassoni,et al.  Aircraft Anti-Icing and De-Icing Techniques and Modeling , 1996 .

[5]  P. K. Banerjee,et al.  Boundary element methods in engineering science , 1981 .

[6]  Christian Kuehn,et al.  From First Lyapunov Coefficients to Maximal Canards , 2010, Int. J. Bifurc. Chaos.

[7]  Andrew M. Stuart,et al.  The Moment Map: Nonlinear Dynamics of Density Evolution via a Few Moments , 2006, SIAM J. Appl. Dyn. Syst..

[8]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[9]  Yongxin Li,et al.  A Minimax Method for Finding Multiple Critical Points and Its Applications to Semilinear PDEs , 2001, SIAM J. Sci. Comput..

[10]  Willy Govaerts,et al.  Numerical computation of bifurcations in large equilibrium systems in matlab , 2014, J. Comput. Appl. Math..

[11]  L. M. Berkovich The Generalized Emden-Fowler Equation , 1997 .

[12]  Y. Choi,et al.  A mountain pass method for the numerical solution of semilinear elliptic problems , 1993 .

[13]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[14]  Jianxin Zhou,et al.  Algorithms and Visualization for solutions of nonlinear Elliptic equations , 2000, Int. J. Bifurc. Chaos.

[15]  H. B. Keller,et al.  NUMERICAL ANALYSIS AND CONTROL OF BIFURCATION PROBLEMS (II): BIFURCATION IN INFINITE DIMENSIONS , 1991 .

[16]  W. Ni CHAPTER 3 - Qualitative Properties of Solutions to Elliptic Problems , 2004 .

[17]  Wim Vanroose,et al.  Numerical Bifurcation Study of Superconducting Patterns on a Square , 2011, SIAM J. Appl. Dyn. Syst..

[18]  Bernd Krauskopf,et al.  The geometry of mixed-mode oscillations in the Olsen model for peroxidase-oxidase reaction , 2009 .

[19]  Bernd Krauskopf,et al.  Numerical continuation of canard orbits in slow–fast dynamical systems , 2010 .

[20]  Michael R. Osborne,et al.  Numerical solution of boundary value problems for ordinary differential equations , 1995, Classics in applied mathematics.

[21]  Tuckerman,et al.  Symmetry-breaking bifurcations in one-dimensional excitable media. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[22]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[23]  C. D. Boor,et al.  Recent Advances in Numerical Analysis. , 1982 .

[24]  Björn Sandstede,et al.  A numerical toolbox for homoclinic bifurcation analysis , 1996 .

[25]  Stefan Heinrich,et al.  Multilevel Monte Carlo Methods , 2001, LSSC.

[26]  Paul C. Fife,et al.  Dynamics of Layered Interfaces Arising from Phase Boundaries , 1988 .

[27]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[28]  Goong Chen,et al.  A high-linking algorithm for sign-changing solutions of semilinear elliptic equations , 1999 .

[29]  Guido Van Rossum,et al.  Python Tutorial , 1999 .

[30]  Wei-Ming Ni,et al.  Large amplitude stationary solutions to a chemotaxis system , 1988 .

[31]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[32]  Daniele Avitabile,et al.  Computation of planar patterns and their stability , 2008 .

[33]  Frank Schilder,et al.  Recipes for Continuation , 2013, Computational science and engineering.

[34]  R. Seydel Practical Bifurcation and Stability Analysis , 1994 .

[35]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .

[36]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[37]  Fred Wubs,et al.  Numerical Bifurcation Methods and their Application to Fluid Dynamics: Analysis beyond Simulation , 2012 .

[38]  Ziqing Xie,et al.  On Finding Multiple Solutions to a Singularly Perturbed Neumann Problem , 2012, SIAM J. Sci. Comput..

[39]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[40]  Some generalizations of the Caginalp phase-field system , 2009 .

[41]  Kenneth Eriksson,et al.  Adaptive finite element methods for parabolic problems. I.: a linear model problem , 1991 .

[42]  Willy Govaerts,et al.  Numerical methods for bifurcations of dynamical equilibria , 1987 .

[43]  L. Tuckerman,et al.  Bifurcation Analysis for Timesteppers , 2000 .

[44]  Bernd Krauskopf,et al.  Computing Geodesic Level Sets on Global (Un)stable Manifolds of Vector Fields , 2003, SIAM J. Appl. Dyn. Syst..

[45]  H. Uecker,et al.  pde2path - version 2.0: faster FEM, multi-parameter continuation, nonlinear boundary conditions, and periodic domains - a short manual , 2014, 1409.3119.

[46]  A. Spence,et al.  Continuation and Bifurcations: Numerical Techniques and Applications , 1990 .

[47]  Thomas F. Fairgrieve,et al.  AUTO 2000 : CONTINUATION AND BIFURCATION SOFTWARE FOR ORDINARY DIFFERENTIAL EQUATIONS (with HomCont) , 1997 .

[48]  G. Samaey,et al.  DDE-BIFTOOL v. 2.00: a Matlab package for bifurcation analysis of delay differential equations , 2001 .

[49]  M. Schmeits,et al.  Application of continuation methods in physical oceanography , 1999 .

[50]  Serafim Rodrigues,et al.  On the numerical Continuation of Isolas of Equilibria , 2012, Int. J. Bifurc. Chaos.

[51]  Jianxin Zhou,et al.  On homotopy continuation method for computing multiple solutions to the Henon equation , 2008 .

[52]  W. Mccrea An Introduction to the Study of Stellar Structure , 1939, Nature.

[53]  Alain Miranville,et al.  The Caginalp phase-field system with coupled dynamic boundary conditions and singular potentials , 2010 .

[54]  T. Bartsch,et al.  Multi-bubble nodal solutions for slightly subcritical elliptic problems in domains with symmetries , 2012, 1208.5892.

[55]  Robert Cimrman SfePy - Write Your Own FE Application , 2014, ArXiv.

[56]  Yongxin Li,et al.  Convergence Results of a Local Minimax Method for Finding Multiple Critical Points , 2002, SIAM J. Sci. Comput..

[57]  Edgar Knobloch,et al.  To Snake or Not to Snake in the Planar Swift-Hohenberg Equation , 2010, SIAM J. Appl. Dyn. Syst..

[58]  Louis A. Romero,et al.  Bifurcation Tracking Algorithms and Software for Large Scale Applications , 2005, Int. J. Bifurc. Chaos.

[59]  Wei-Ming Ni,et al.  DIFFUSION, CROSS-DIFFUSION, AND THEIR SPIKE-LAYER STEADY STATES , 1998 .

[60]  Juncheng Wei,et al.  An optimal bound on the number of interior spike solutions for Lin-Ni-Takagi problem , 2012, 1209.2824.

[61]  Björn Sandstede,et al.  Computing absolute and essential spectra using continuation , 2007 .

[62]  E. J. Doedel,et al.  AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .

[63]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[64]  James A. Warren,et al.  FiPy: Partial Differential Equations with Python , 2009, Computing in Science & Engineering.

[65]  D. Ter Haar,et al.  Collected Papers of L. D. Landau , 1965 .

[66]  M. Grasselli,et al.  Long Time Behavior of Solutions to the Caginalp System with Singular Potential , 2006 .

[67]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[68]  F. Lin,et al.  On the number of interior peak solutions for a singularly perturbed Neumann problem , 2007 .

[69]  Christian Kuehn,et al.  Deterministic Continuation of Stochastic Metastable Equilibria via Lyapunov Equations and Ellipsoids , 2011, SIAM J. Sci. Comput..

[70]  Björn Sandstede,et al.  Snakes, Ladders, and Isolas of Localized Patterns , 2009, SIAM J. Math. Anal..

[71]  H. B. Keller Global Homotopies and Newton Methods , 1978 .

[72]  Jianxin Zhou,et al.  A Local Minimax-Newton Method for Finding Multiple Saddle Points with Symmetries , 2004, SIAM J. Numer. Anal..

[73]  R. Seydel,et al.  Bifurcation: Analysis, Algorithms, Applications , 1987 .

[74]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[75]  Claudia Wulff,et al.  Numerical Continuation of Symmetric Periodic Orbits , 2006, SIAM J. Appl. Dyn. Syst..

[76]  H. Keller The Bordering Algorithm and Path Following Near Singular Points of Higher Nullity , 1983 .

[77]  David J. B. Lloyd,et al.  Isolas of 2-Pulse Solutions in Homoclinic Snaking Scenarios , 2011 .

[78]  Barkley,et al.  Linear stability analysis of rotating spiral waves in excitable media. , 1992, Physical review letters.

[79]  Jianxin Zhou,et al.  A local min-max-orthogonal method for finding multiple solutions to noncooperative elliptic systems , 2010, Math. Comput..

[80]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[81]  J. Serrin,et al.  Non-existence of positive solutions of Lane-Emden systems , 1996 .

[82]  Matthias Abend Continuation And Bifurcations Numerical Techniques And Applications , 2016 .

[83]  Eugene Isaacson,et al.  Numerical Solution of Boundary Value Problems for Ordinary Differential Equations (Uri M. Ascher, Robert M. M. Mattheij, and Robert D. Russell) , 1989, SIAM Rev..

[84]  Robert D. Russell,et al.  COLSYS - - A Collocation Code for Boundary - Value Problems , 1978, Codes for Boundary-Value Problems in Ordinary Differential Equations.

[85]  Frank Schilder,et al.  Numerical Bifurcation of Hamiltonian Relative Periodic Orbits , 2009, SIAM J. Appl. Dyn. Syst..

[86]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[87]  H. Keller Isolas and Perturbed Bifurcation Theory , 2017 .

[88]  D. Gottlieb,et al.  Numerical analysis of spectral methods , 1977 .

[89]  Frank Schilder,et al.  Continuation of Quasi-periodic Invariant Tori , 2005, SIAM J. Appl. Dyn. Syst..

[90]  G. Caginalp An analysis of a phase field model of a free boundary , 1986 .

[91]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[92]  John Guckenheimer,et al.  A Survey of Methods for Computing (un)Stable Manifolds of Vector Fields , 2005, Int. J. Bifurc. Chaos.

[93]  U. Thiele,et al.  TIME INTEGRATION AND STEADY-STATE CONTINUATION METHOD FOR LUBRICATION EQUATIONS , 2009 .

[94]  Uwe Thiele,et al.  Time Integration and Steady-State Continuation for 2d Lubrication Equations , 2009, SIAM J. Appl. Dyn. Syst..

[95]  B. Krauskopf,et al.  Numerical Continuation Methods for Dynamical Systems: Path following and boundary value problems , 2007 .

[96]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[97]  Michael E. Henderson,et al.  Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds , 2002, Int. J. Bifurc. Chaos.

[98]  Wolfgang Bangerth,et al.  Quo Vadis, Scientific Software? , 2014 .

[99]  L. R. Koenig,et al.  A Short Course in Cloud Physics , 1979 .

[100]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[101]  Scott G. McCalla,et al.  Snaking of radial solutions of the multi-dimensional Swift–Hohenberg equation: A numerical study , 2010 .

[102]  Karen C. Hegener,et al.  Engineering and applied sciences , 1975 .

[103]  Gábor Stépán,et al.  Continuation of Bifurcations in Periodic Delay-Differential Equations Using Characteristic Matrices , 2006, SIAM J. Sci. Comput..

[104]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[105]  J. Dawes,et al.  Snaking and isolas of localised states in bistable discrete lattices , 2009, 0910.0294.

[106]  Daniel Wetzel,et al.  pde2path - A Matlab package for continuation and bifurcation in 2D elliptic systems , 2012, 1208.3112.

[107]  Alan R. Champneys,et al.  Localized Hexagon Patterns of the Planar Swift-Hohenberg Equation , 2008, SIAM J. Appl. Dyn. Syst..