General Nth order integrals of motion in the Euclidean plane

The general form of an integral of motion that is a polynomial of order N in the momenta is presented for a Hamiltonian system in two-dimensional Euclidean space. The classical and the quantum cases are treated separately, emphasizing both the similarities and the differences between the two. The main application will be to study Nth order superintegrable systems that allow separation of variables in the Hamilton–Jacobi and Schrödinger equations, respectively.

[1]  A. Marchesiello,et al.  Third-order superintegrable systems with potentials satisfying nonlinear equations , 2015, 1501.00470.

[2]  D. Riglioni,et al.  Quantum integrals from coalgebra structure , 2014, 1410.4495.

[3]  J. Negro,et al.  Heisenberg-type higher order symmetries of superintegrable systems separable in Cartesian coordinates , 2014, 1411.6216.

[4]  A. Enciso,et al.  An exactly solvable deformation of the Coulomb problem associated with the Taub-NUT metric , 2014, 1407.1401.

[5]  W. Miller,et al.  Classical and quantum superintegrability with applications , 2013, 1309.2694.

[6]  Robert Milson,et al.  Rational extensions of the quantum harmonic oscillator and exceptional Hermite polynomials , 2013, 1306.5143.

[7]  D. Riglioni Classical and quantum higher order superintegrable systems from coalgebra symmetry , 2013, 1304.4918.

[8]  C. Quesne,et al.  New families of superintegrable systems from Hermite and Laguerre exceptional orthogonal polynomials , 2012, 1211.2957.

[9]  P. Winternitz,et al.  Third-order superintegrable systems separable in parabolic coordinates , 2012, 1204.0700.

[10]  I. Marquette Classical ladder operators, polynomial Poisson algebras and classification of superintegrable systems , 2011, 1109.4471.

[11]  A. Enciso,et al.  Superintegrable Oscillator and Kepler Systems on Spaces of Nonconstant Curvature via the St , 2011, 1103.4554.

[12]  A. Enciso,et al.  Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability , 2011, 1102.5494.

[13]  P. Winternitz,et al.  A nonseparable quantum superintegrable system in 2D real Euclidean space , 2011, 1101.5405.

[14]  M. Przybylska,et al.  On algebraic construction of certain integrable and super-integrable systems , 2010, 1011.3249.

[15]  W. Miller,et al.  Superintegrability and higher-order constants for classical and quantum systems , 2010, 1002.2665.

[16]  I. Marquette An infinite family of superintegrable systems from higher order ladder operators and supersymmetry , 2010, 1008.3073.

[17]  H. Yoshida,et al.  Necessary conditions for classical super-integrability of a certain family of potentials in constant curvature spaces , 2010, 1004.3854.

[18]  P. Winternitz,et al.  An infinite family of superintegrable deformations of the Coulomb potential , 2010, 1003.5230.

[19]  C. Daskaloyannis,et al.  Quadratic algebras for three-dimensional superintegrable systems , 2010 .

[20]  P. Winternitz,et al.  Third-order superintegrable systems separating in polar coordinates , 2010, 1002.1989.

[21]  I. Marquette Superintegrability and higher order polynomial algebras , 2009, 0908.4399.

[22]  W. Miller,et al.  Families of classical subgroup separable superintegrable systems , 2009, 0912.3158.

[23]  P. Winternitz,et al.  Periodic orbits for an infinite family of classical superintegrable systems , 2009, 0910.0299.

[24]  I. Marquette Supersymmetry as a method of obtaining new superintegrable systems with higher order integrals of motion , 2009, 0908.1246.

[25]  P. Winternitz,et al.  An infinite family of solvable and integrable quantum systems on a plane , 2009, 0904.0738.

[26]  I. Marquette Superintegrability with third order integrals of motion, cubic algebras and supersymmetric quantum mechanics II:Painleve transcendent potentials , 2008, 0811.1568.

[27]  E. Kalnins Second order superintegrable systems in conformally flat spaces . V : 2 D and 3 D quantum systems , 2009 .

[28]  A. Hinze,et al.  Second order superintegrable systems in conformally flat spaces . 2 : The classical 2 D Stäckel transform , 2009 .

[29]  C. Quesne Exceptional orthogonal polynomials, exactly solvable potentials and supersymmetry , 2008, 0807.4087.

[30]  P. Winternitz,et al.  Superintegrable systems with third-order integrals of motion , 2007, 0711.4783.

[31]  C. Daskaloyannis,et al.  Quantum superintegrable systems with quadratic integrals on a two dimensional manifold , 2007 .

[32]  W. Miller,et al.  Second-order superintegrable systems in conformally flat spaces. V. Two- and three-dimensional quantum systems , 2006 .

[33]  C. D. A. Y. Tanoudes Classification of quantum superintegrable systems with quadratic integrals on two dimensional manifolds , 2006, math-ph/0607058.

[34]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Stäckel transform and 3D classification theory , 2006 .

[35]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. III. Three-dimensional classical structure theory , 2005 .

[36]  W. Miller,et al.  Second order superintegrable systems in conformally flat spaces. II. The classical two-dimensional Stäckel transform , 2005 .

[37]  A. Nikitin Higher-order symmetry operators for Schrödinger equation , 2004 .

[38]  S. Gravel Hamiltonians separable in cartesian coordinates and third-order integrals of motion , 2003, math-ph/0302028.

[39]  W. Miller,et al.  Superintegrable systems in Darboux spaces , 2003, math-ph/0307039.

[40]  S. Gravel,et al.  Superintegrability with third-order integrals in quantum and classical mechanics , 2002, math-ph/0206046.

[41]  Miguel A. Rodriguez,et al.  Quantum superintegrability and exact solvability in n dimensions , 2001, math-ph/0110018.

[42]  P. Winternitz,et al.  Superintegrability in a two-dimensional space of nonconstant curvature , 2001, math-ph/0108015.

[43]  P. Tempesta,et al.  Exact solvability of superintegrable systems , 2000, hep-th/0011209.

[44]  C. Daskaloyannis Quadratic Poisson algebras of two-dimensional classical superintegrable systems and quadratic associative algebras of quantum superintegrable systems , 2000, math-ph/0003017.

[45]  Valerii I. Gromak,et al.  Bäcklund Transformations of Painlevé Equations and Their Applications , 1999 .

[46]  J. Hietarinta Pure quantum integrability , 1997, solv-int/9708010.

[47]  M. Moshinsky,et al.  The harmonic oscillator in modern physics , 1996 .

[48]  L. Vinet,et al.  Superintegrable systems: Polynomial algebras and quasi-exactly solvable Hamiltonians , 1995 .

[49]  A. Zhedanov,et al.  Quadratic algebras and dynamics in curved spaces. II. The Kepler problem , 1992 .

[50]  A. Zhedanov,et al.  Quadratic algebras and dynamics in curved spaces. I. Oscillator , 1992 .

[51]  N. Evans Group theory of the Smorodinsky-Winternitz system , 1991 .

[52]  N. Evans Super-integrability of the Winternitz system , 1990 .

[53]  Evans,et al.  Superintegrability in classical mechanics. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[54]  J. Hietarinta,et al.  On the hbar2 correction terms in quantum integrability , 1989 .

[55]  J. Hietarinta Classical versus quantum integrability , 1984 .

[56]  P. Winternitz,et al.  A systematic search for nonrelativistic systems with dynamical symmetries , 1967 .

[57]  Y. Smorodinskii,et al.  SYMMETRY GROUPS IN CLASSICAL AND QUANTUM MECHANICS , 1966 .

[58]  P. Winternitz,et al.  ON HIGHER SYMMETRIES IN QUANTUM MECHANICS , 1965 .

[59]  E. L. Hill,et al.  On the Problem of Degeneracy in Quantum Mechanics , 1940 .

[60]  V. Bargmann,et al.  Zur Theorie des Wasserstoffatoms , 1936 .

[61]  V. Fock,et al.  Zur Theorie des Wasserstoffatoms , 1935 .