Efficient Rational Proofs for Space Bounded Computations

We present new protocols for the verification of space bounded polytime computations against a rational adversary. For such computations requiring sublinear space our protocol requires only a verifier running in sublinear-time. We extend our main result in several directions: (i) we present protocols for randomized complexity classes, using a new composition theorem for rational proofs which is of independent interest; (ii) we present lower bounds (i.e. conditional impossibility results) for Rational Proofs for various complexity classes.

[1]  David S. Johnson,et al.  The NP-completeness column: The many limits on approximation , 2006, TALG.

[2]  Noam Nisan,et al.  Pseudorandom generators for space-bounded computation , 1992, Comb..

[3]  Yehuda Lindell,et al.  Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries , 2007, Journal of Cryptology.

[4]  László Babai,et al.  Trading group theory for randomness , 1985, STOC '85.

[5]  Alon Rosen,et al.  Rational arguments: single round delegation with sublinear verification , 2014, ITCS.

[6]  Moni Naor,et al.  Concurrent zero-knowledge , 1998, STOC '98.

[7]  Silvio Micali,et al.  The knowledge complexity of interactive proof-systems , 1985, STOC '85.

[8]  Periklis A. Papakonstantinou Constructions, Lower Bounds, and New Directions in Cryptography and Computational Complexity , 2010 .

[9]  Sergio De Agostino,et al.  Bounded Size Dictionary Compression: SCk-Completeness and NC Algorithms , 1998, STACS.

[10]  Guy N. Rothblum,et al.  Constant-Round Interactive Proofs for Delegating Computation , 2016, Electron. Colloquium Comput. Complex..

[11]  Joseph Y. Halpern I Don't Want to Think About it Now: Decision Theory with Costly Computation , 2010, KR.

[12]  Rosario Gennaro,et al.  Sequentially Composable Rational Proofs , 2015, GameSec.

[13]  Vijay S. Pande,et al.  Folding@Home and Genome@Home: Using distributed computing to tackle previously intractable problem , 2009, 0901.0866.

[14]  Alon Rosen,et al.  Rational Sumchecks , 2015, TCC.

[15]  Shikha Singh,et al.  Rational Proofs with Multiple Provers , 2015, ITCS.

[16]  Pablo Azar,et al.  Super-efficient rational proofs , 2013, EC '13.

[17]  Craig Gentry,et al.  Quadratic Span Programs and Succinct NIZKs without PCPs , 2013, IACR Cryptol. ePrint Arch..

[18]  Craig Gentry,et al.  Non-interactive Verifiable Computing: Outsourcing Computation to Untrusted Workers , 2010, CRYPTO.

[19]  David P. Anderson,et al.  SETI@home: an experiment in public-resource computing , 2002, CACM.

[20]  Andrew J. Blumberg,et al.  Verifying computations without reexecuting them , 2015, Commun. ACM.

[21]  R. Raz,et al.  How to delegate computations: the power of no-signaling proofs , 2014, Electron. Colloquium Comput. Complex..

[22]  Subhash Khot,et al.  Better Inapproximability Results for MaxClique, Chromatic Number and Min-3Lin-Deletion , 2006, ICALP.

[23]  Silvio Micali,et al.  Rational proofs , 2012, STOC '12.

[24]  Maxim Sviridenko,et al.  Maximum Quadratic Assignment Problem: Reduction from Maximum Label Cover and LP-based Approximation Algorithm , 2010, TALG.

[25]  Manuel Blum,et al.  Noninteractive Zero-Knowledge , 1991, SIAM J. Comput..

[26]  Eli Upfal,et al.  Constructing a perfect matching is in random NC , 1985, STOC '85.

[27]  Alptekin Küpçü,et al.  Incentivizing outsourced computation , 2008, NetEcon '08.