From pre-attentive processes to durable representation: an ERP index of visual distraction.

Visual search and oddball paradigms were combined to investigate memory for to-be-ignored color changes in a group of 12 healthy participants. The onset of unexpected color change of an irrelevant stimulus evoked two reliable ERP effects: a component of the event-related potential (ERP), similar to the visual mismatch negativity response (vMMN), with a latency of 120-160 ms and a posterior distribution over the left hemisphere and Late Fronto-Central Negativity (LFCN) with a latency of 320-400 ms, apparent at fronto-central electrodes and some posterior sites. Color change of that irrelevant stimulus also slowed identification of a visual target, indicating distraction. The amplitude of this color-change vMMN, but not LFCN, indexed this distraction effect. That is, electrophysiological and behavioral measures were correlated. The interval between visual scenes approximated 1s (611-1629 ms), indicating that the brain's sensory memory for the color of the preceding visual scenes must persist for at least 600 ms. Therefore, in the case of the neural code for color, durable memory representations are formed in an obligatory manner.

[1]  Yuping Wang,et al.  Event-Related Potentials Elicited by Visual Stimulus-Duration Discrimination Tasks , 2004, Clinical EEG and neuroscience.

[2]  E. Schröger,et al.  A comparison of auditory and visual distraction effects: behavioral and event-related indices. , 2001, Brain research. Cognitive brain research.

[3]  J. Theeuwes Stimulus-driven capture and attentional set: selective search for color and visual abrupt onsets. , 1994, Journal of experimental psychology. Human perception and performance.

[4]  D. Moore Cortical neurons signal sound novelty , 2003, Nature Neuroscience.

[5]  Risto Näätänen,et al.  The N1 hypothesis and irrelevant sound: evidence from token set size effects. , 2003, Brain research. Cognitive brain research.

[6]  K. Reinikainen,et al.  Attentive novelty detection in humans is governed by pre-attentive sensory memory , 1994, Nature.

[7]  K. Alho,et al.  Separate Time Behaviors of the Temporal and Frontal Mismatch Negativity Sources , 2000, NeuroImage.

[8]  Piia Astikainen,et al.  Visual mismatch negativity for changes in orientation – a sensory memory‐dependent response , 2008, The European journal of neuroscience.

[9]  István Czigler,et al.  Memory-based detection of task-irrelevant visual changes. , 2002, Psychophysiology.

[10]  Marina Schmid,et al.  An Introduction To The Event Related Potential Technique , 2016 .

[11]  M. Kimura Visual mismatch negativity and unintentional temporal-context-based prediction in vision. , 2012, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[12]  Paul M. Corballis,et al.  Event-Related Potentials Dissociate Effects of Salience and Space in Biased Competition for Visual Representation , 2010, PloS one.

[13]  A. Noë,et al.  A sensorimotor account of vision and visual consciousness. , 2001, The Behavioral and brain sciences.

[14]  R. Näätänen,et al.  Early selective-attention effect on evoked potential reinterpreted. , 1978, Acta psychologica.

[15]  Erich Schröger,et al.  Visual distraction: a behavioral and event-related brain potential study in humans , 2006, Neuroreport.

[16]  Ronald A. Rensink,et al.  TO SEE OR NOT TO SEE: The Need for Attention to Perceive Changes in Scenes , 1997 .

[17]  S. Luck An Introduction to the Event-Related Potential Technique , 2005 .

[18]  L. Schiebinger,et al.  Commentary on Risto Naatanen (1990). The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive fenctiono BBS 13s201-2888 , 1991 .

[19]  Massimiliano Valeriani,et al.  Attentional load of the primary task influences the frontal but not the temporal generators of mismatch negativity. , 2005, Brain research. Cognitive brain research.

[20]  J. Wolfe Inattentional Amnesia , 2000 .

[21]  Jeffrey R W Mounts,et al.  Competitive interaction degrades target selection: an ERP study. , 2009, Psychophysiology.

[22]  P. Astikainen,et al.  Event-related potentials reveal rapid registration of features of infrequent changes during change blindness , 2010, Behavioral and Brain Functions.

[23]  H. BOUMA,et al.  Interaction Effects in Parafoveal Letter Recognition , 1970, Nature.

[24]  L. Nummenmaa,et al.  Processing of unattended emotional visual scenes. , 2007, Journal of experimental psychology. General.

[25]  Y. Shtyrov,et al.  Automatic processing of unattended lexical information in visual oddball presentation: neurophysiological evidence , 2013, Front. Hum. Neurosci..

[26]  Elizabeth S. Olds,et al.  Tracking visual search over space and time , 2000, Psychonomic bulletin & review.

[27]  István Czigler,et al.  Processing of unattended facial emotions: A visual mismatch negativity study , 2012, NeuroImage.

[28]  Ronald A. Rensink,et al.  Change-blindness as a result of ‘mudsplashes’ , 1999, Nature.

[29]  M. Chun,et al.  Contextual Cueing: Implicit Learning and Memory of Visual Context Guides Spatial Attention , 1998, Cognitive Psychology.

[30]  R. Cammann Is there a mismatch negativity (MMN) in visual modality? , 1990, Behavioral and Brain Sciences.

[31]  I. Nelken,et al.  Processing of low-probability sounds by cortical neurons , 2003, Nature Neuroscience.

[32]  Teemu Rinne,et al.  Human cortical functions in auditory change detection evaluated with multiple brain research methods , 2001 .

[33]  K. Shapiro,et al.  The attentional blink , 1997, Trends in Cognitive Sciences.

[34]  J. Theeuwes,et al.  Electrophysiological Evidence of the Capture of Visual Attention , 2006, Journal of Cognitive Neuroscience.

[35]  E. Schröger,et al.  Top-down attention affects sequential regularity representation in the human visual system. , 2010, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[36]  P. Corballis,et al.  Dynamics of target and distractor processing in visual search: Evidence from event-related brain potentials , 2011, Neuroscience Letters.

[37]  Erich Schröger,et al.  Human Visual System Automatically Encodes Sequential Regularities of Discrete Events , 2010, Journal of Cognitive Neuroscience.

[38]  Jonathan R. Folstein,et al.  Influence of cognitive control and mismatch on the N2 component of the ERP: a review. , 2007, Psychophysiology.

[39]  J. Theeuwes,et al.  Attentional control during visual search: the effect of irrelevant singletons. , 1998, Journal of experimental psychology. Human perception and performance.

[40]  Elso Arruda,et al.  The prefrontal cortex: anatomy, physiology and neuropsychology of the frontal lobo , 1990 .

[41]  Piia Astikainen,et al.  The human brain processes visual changes that are not cued by attended auditory stimulation , 2004, Neuroscience Letters.

[42]  I. Thornton,et al.  Change Detection Without Awareness: Do Explicit Reports Underestimate the Representation of Change in the Visual System? , 2000 .

[43]  A. Kübler,et al.  Task instructions modulate the attentional mode affecting the auditory MMN and the semantic N400 , 2014, Front. Hum. Neurosci..

[44]  István Czigler,et al.  Is the attentional trace theory modality specific? , 1990, Behavioral and Brain Sciences.

[45]  István Czigler,et al.  Backward masking and visual mismatch negativity: electrophysiological evidence for memory-based detection of deviant stimuli. , 2007, Psychophysiology.

[46]  Dianne C. Berry,et al.  Implicit Learning , 1993 .

[47]  I. Winkler,et al.  Evidence from auditory and visual event-related potential (ERP) studies of deviance detection (MMN and vMMN) linking predictive coding theories and perceptual object representations. , 2012, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[48]  Rajesh P. N. Rao,et al.  Embodiment is the foundation, not a level , 1996, Behavioral and Brain Sciences.

[49]  G. Stefanics,et al.  Visual Mismatch Negativity Reveals Automatic Detection of Sequential Regularity Violation , 2011, Front. Hum. Neurosci..

[50]  Ana Susac,et al.  Early cortical responses are sensitive to changes in face stimuli , 2010, Brain Research.

[51]  J G Quinn,et al.  Irrelevant Pictures in Visual Working Memory , 1996, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[52]  I. Winkler,et al.  Impact of lower- vs. upper-hemifield presentation on automatic colour-deviance detection: A visual mismatch negativity study , 2012, Brain Research.

[53]  J. G. Quinn,et al.  Interference in Visual Working Memory , 2000, The Quarterly journal of experimental psychology. A, Human experimental psychology.

[54]  M. Donald Précis of Origins of the modern mind: Three stages in the evolution of culture and cognition , 1993, Behavioral and Brain Sciences.

[55]  S. Luck,et al.  Electrophysiological correlates of feature analysis during visual search. , 1994, Psychophysiology.

[56]  D. Simons,et al.  CHAPTER 13 – Change Blindness , 2005 .

[57]  Vincent Di Lollo,et al.  Electrophysiological Indices of Target and Distractor Processing in Visual Search , 2009, Journal of Cognitive Neuroscience.

[58]  Position but not color deviants result in visual mismatch negativity in an active oddball task , 2009, Neuroreport.

[59]  István Czigler,et al.  One plus one is less than two: Visual features elicit non-additive mismatch-related brain activity , 2011, Brain Research.

[60]  E. Amenedo,et al.  MMN in the visual modality: a review , 2003, Biological Psychology.

[61]  E. Schröger On the detection of auditory deviations: a pre-attentive activation model. , 1997, Psychophysiology.

[62]  Shimin Fu,et al.  Event-related potentials reveal involuntary processing of orientation changes in the visual modality. , 2003, Psychophysiology.

[63]  Motohiro Kimura,et al.  Probability-independent and -dependent ERPs reflecting visual change detection. , 2006, Psychophysiology.

[64]  Piia Astikainen,et al.  Explicit behavioral detection of visual changes develops without their implicit neurophysiological detectability , 2012, Front. Hum. Neurosci..

[65]  Erich Schröger,et al.  Localizing sensory and cognitive systems for pre-attentive visual deviance detection: An sLORETA analysis of the data of Kimura et al. (2009) , 2010, Neuroscience Letters.

[66]  Piia Astikainen,et al.  This Reprint May Differ from the Original in Pagination and Typographic Detail. Event-related Potentials to Task-irrelevant Changes in Facial Expressions Behavioral and Brain Functions Event-related Potentials to Task-irrelevant Changes in Facial Expressions , 2022 .

[67]  Daniel J. Simons,et al.  Inattentional blindness , 2007, Scholarpedia.

[68]  M. Gardner,et al.  Can illusory deviant stimuli be used as attentional distractors to record vMMN in a passive three stimulus oddball paradigm? , 2009, Experimental Brain Research.

[69]  István Czigler,et al.  Visual mismatch negativity to irrelevant changes is sensitive to task-relevant changes , 2010, Neuropsychologia.

[70]  Jun Kong,et al.  The zigzag paradigm: a new P300-based brain computer interface , 2013, ICMI '13.

[71]  Dirk J. Heslenfeld,et al.  Visual Mismatch Negativity. , 2003 .

[72]  Lee M. Miller,et al.  Methods to Eliminate Stimulus Transduction Artifact From Insert Earphones During Electroencephalography , 2012, Ear and hearing.

[73]  S. Dewhurst,et al.  Dynamic visual noise interferes with storage in visual working memory. , 2008, Experimental psychology.

[74]  Risto Näätänen,et al.  Mismatch and processing negativities in auditory stimulus processing and selection , 1991, Behavioral and Brain Sciences.

[75]  L. Deouell,et al.  Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators. , 1998, Psychophysiology.

[76]  S. Luck Ten Simple Rules for Designing and Interpreting ERP Experiments , 2003 .

[77]  E. Schröger,et al.  Human visual system automatically represents large-scale sequential regularities , 2010, Brain Research.

[78]  István Czigler,et al.  Visual change detection: event-related potentials are dependent on stimulus location in humans , 2004, Neuroscience Letters.

[79]  M. Eimer,et al.  Electrophysiological correlates of change detection. , 2005, Psychophysiology.

[80]  I. Czigler Visual mismatch negativity: Violation of nonattended environmental regularities , 2007 .

[81]  Motohiro Kimura,et al.  Involvement of memory-comparison-based change detection in visual distraction. , 2008, Psychophysiology.

[82]  Yu-Hsiang Wu,et al.  Clinical Measures of Hearing Aid Directivity: Assumption, Accuracy, and Reliability , 2012, Ear and hearing.

[83]  Erich Schröger,et al.  Distraction effects in vision: behavioral and event-related potential indices , 2004, Neuroreport.

[84]  N. Busch,et al.  ERP effects of change localization, change identification, and change blindness , 2010, Neuroreport.

[85]  R. Ilmoniemi,et al.  Sensory-memory-based change detection in face stimuli , 2010 .

[86]  Bruce J. Fisch,et al.  Fisch and Spehlmann's Eeg Primer: Basic Principles of Digital and Analog Eeg , 1999 .

[87]  S J Luck,et al.  Spatial filtering during visual search: evidence from human electrophysiology. , 1994, Journal of experimental psychology. Human perception and performance.

[88]  Ana Susac,et al.  Neurodynamic Studies on Emotional and Inverted Faces in an Oddball Paradigm , 2003, Brain Topography.

[89]  István Czigler,et al.  Automatic prediction error responses to hands with unexpected laterality: An electrophysiological study , 2012, NeuroImage.

[90]  Ana Susac,et al.  Face activated neurodynamic cortical networks , 2011, Medical & Biological Engineering & Computing.

[91]  Jan Theeuwes,et al.  Electrophysiological Evidence of the Capture of Visual Attention , 2013, J. Cogn. Neurosci..

[92]  Motohiro Kimura,et al.  Attention switching function of memory-comparison-based change detection system in the visual modality. , 2008, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[93]  Steven J Luck,et al.  Active suppression of distractors that match the contents of visual working memory , 2011, Visual cognition.

[94]  Motohiro Kimura,et al.  An ERP study of visual change detection: effects of magnitude of spatial frequency changes on the change-related posterior positivity. , 2006, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[95]  Erich Schröger,et al.  Prefrontal cortex involvement in preattentive auditory deviance detection: neuroimaging and electrophysiological evidence , 2003, NeuroImage.

[96]  Event-related potentials during preattentional processing of color stimuli , 2008, Neuroreport.

[97]  J. Fuster The Prefrontal Cortex , 1997 .

[98]  W. Walter,et al.  Contingent Negative Variation : An Electric Sign of Sensori-Motor Association and Expectancy in the Human Brain , 1964, Nature.

[99]  M. Sams,et al.  Visual awareness of low-contrast stimuli is reflected in event-related brain potentials. , 2003, Psychophysiology.

[100]  Erich Schröger,et al.  Visual mismatch negativity and its importance in visual cognitive sciences , 2011, Neuroreport.

[101]  Terri L. Scott,et al.  Light up and see: Enhancement of the visual mismatch negativity (vMMN) by nicotine , 2010, Brain Research.

[102]  A. Miyake,et al.  Models of Working Memory , 1997 .

[103]  Stefan Berti,et al.  The attentional blink demonstrates automatic deviance processing in vision , 2011, Neuroreport.

[104]  P. Ullsperger,et al.  Mismatch negativity in event-related potentials to auditory stimuli as a function of varying interstimulus interval. , 1992, Psychophysiology.

[105]  István Czigler,et al.  Unnoticed regularity violation elicits change-related brain activity , 2009, Biological Psychology.

[106]  Ronald A. Rensink Change detection. , 2002, Annual review of psychology.

[107]  M. Morgan,et al.  The Role of Target Salience in Crowding , 2005, Perception.

[108]  M. Chun,et al.  Contextual cueing of visual attention , 2022 .

[109]  S. Tobimatsu,et al.  Preattentive visual change detection as reflected by the mismatch negativity (MMN)—Evidence for a memory-based process , 2009, Neuroscience Research.

[110]  Alexandra Clifford,et al.  Color categories affect pre-attentive color perception , 2010, Biological Psychology.

[111]  E. Schröger,et al.  Differential Contribution of Frontal and Temporal Cortices to Auditory Change Detection: fMRI and ERP Results , 2002, NeuroImage.

[112]  F. Richer,et al.  Matching cannot account for context effects on the attention-related negative potential , 1991, Behavioral and Brain Sciences.

[113]  R. Näätänen The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function , 1990, Behavioral and Brain Sciences.

[114]  R. Logie Visuo-spatial Working Memory , 1994 .

[115]  Jun Kong,et al.  Introducing the Edges Paradigm: A P300 Brain–Computer Interface for Spelling Written Words , 2015, IEEE Transactions on Human-Machine Systems.

[116]  Tom A. Campbell A theory of attentional modulations of the supratemporal generation of the auditory mismatch negativity (MMN) , 2015, Front. Hum. Neurosci..

[117]  Jean McConnell,et al.  Manipulation of Interference in the Passive Visual Store , 1999 .