An efficient quasi-optimal space-time PGD application to frictional contact mechanics

[1]  A. Huerta,et al.  Proper generalized decomposition for parameterized Helmholtz problems in heterogeneous and unbounded domains: Application to harbor agitation , 2015 .

[2]  David Dureisseix,et al.  A multiscale large time increment/FAS algorithm with time‐space model reduction for frictional contact problems , 2014 .

[3]  Adrien Leygue,et al.  The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .

[4]  A. Ammar,et al.  Space–time proper generalized decompositions for the resolution of transient elastodynamic models , 2013 .

[5]  Charbel Farhat,et al.  Nonlinear model order reduction based on local reduced‐order bases , 2012 .

[6]  Marie-Christine Baietto,et al.  Optimization of a stabilized X-FEM formulation for frictional cracks , 2012 .

[7]  Charbel Farhat,et al.  The GNAT method for nonlinear model reduction: Effective implementation and application to computational fluid dynamics and turbulent flows , 2012, J. Comput. Phys..

[8]  Charbel Farhat,et al.  Toward Real-Time Computational-Fluid-Dynamics-Based Aeroelastic Computations Using a Database of Reduced-Order Information , 2010 .

[9]  Pierre-Alain Boucard,et al.  A parallel, multiscale domain decomposition method for the transient dynamic analysis of assemblies with friction , 2010 .

[10]  Chris H. Q. Ding,et al.  Are Tensor Decomposition Solutions Unique? On the Global Convergence HOSVD and ParaFac Algorithms , 2009, PAKDD.

[11]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modelling of complex fluids - Part II: Transient simulation using space-time separated representations , 2007 .

[12]  Anthony Gravouil,et al.  A new fatigue frictional contact crack propagation model with the coupled X-FEM/LATIN method , 2007 .

[13]  Francisco Chinesta,et al.  A new family of solvers for some classes of multidimensional partial differential equations encountered in kinetic theory modeling of complex fluids , 2006 .

[14]  M. Brand,et al.  Fast low-rank modifications of the thin singular value decomposition , 2006 .

[15]  Tamara G. Kolda,et al.  Orthogonal Tensor Decompositions , 2000, SIAM J. Matrix Anal. Appl..

[16]  Joos Vandewalle,et al.  On the Best Rank-1 and Rank-(R1 , R2, ... , RN) Approximation of Higher-Order Tensors , 2000, SIAM J. Matrix Anal. Appl..

[17]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[18]  Pierre Ladevèze,et al.  MODULAR ANALYSIS OF ASSEMBLAGES OF THREE-DIMENSIONAL STRUCTURES WITH UNILATERAL CONTACT CONDITIONS , 1999 .

[19]  P. Ladevèze Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .

[20]  Pierre Ladevèze,et al.  A nonincremental approach for large displacement problems , 1997 .

[21]  Tod A. Laursen,et al.  Formulation and treatment of frictional contact problems using finite elements , 1992 .

[22]  J. Bunch,et al.  Updating the singular value decomposition , 1978 .

[23]  P. Young,et al.  Time series analysis, forecasting and control , 1972, IEEE Transactions on Automatic Control.

[24]  Michael D. Geurts,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[25]  C. Eckart,et al.  The approximation of one matrix by another of lower rank , 1936 .

[26]  Stephen G. Hall,et al.  ARIMA Models and the Box-Jenkins Methodology , 2016 .

[27]  David Dureisseix,et al.  Toward an optimal a priori reduced basis strategy for frictional contact problems with LATIN solver , 2015 .

[28]  David Néron,et al.  A model reduction technique based on the PGD for elastic-viscoplastic computational analysis , 2013 .

[29]  Pierre Alart,et al.  Using Nonsmooth Analysis for Numerical Simulation of Contact Mechanics , 2006 .

[30]  Randall J. Allemang,et al.  THE MODAL ASSURANCE CRITERION–TWENTY YEARS OF USE AND ABUSE , 2003 .

[31]  Pierre Ladevèze,et al.  Nonlinear Computational Structural Mechanics , 1999 .

[32]  J. Oden,et al.  Contact problems in elasticity , 1988 .

[33]  G. Golub Matrix computations , 1983 .

[34]  A. I. McLeod,et al.  Distribution of the Residual Autocorrelations in Multivariate Arma Time Series Models , 1981 .