Zero-Emission Multivalorization of Light Alcohols with Self-Separable Pure H2 Fuel

[1]  K. Yong,et al.  Boron doping induced charge transfer switching of a C3N4/ZnO photocatalyst from Z-scheme to type II to enhance photocatalytic hydrogen production , 2021 .

[2]  H. Ghasemi,et al.  Making g-C3N4 ultra-thin nanosheets active for photocatalytic overall water splitting , 2021 .

[3]  Shaobin Wang,et al.  Efficient photocatalytic overall water splitting on metal-free 1D SWCNT/2D ultrathin C3N4 heterojunctions via novel non-resonant plasmonic effect , 2020, Applied Catalysis B: Environmental.

[4]  Soojin Park,et al.  Phosphorus-doped g-C3N4/SnS nanocomposite for efficient photocatalytic reduction of aqueous Cr(VI) under visible light , 2020 .

[5]  H. Dai,et al.  A Resource utilization method for volatile organic compounds emission from the semiconductor industry: Selective catalytic oxidation of isopropanol to acetone Over Au/α-Fe2O3 nanosheets , 2020 .

[6]  Charles E. Creissen,et al.  Solar‐Driven Electrochemical CO2 Reduction with Heterogeneous Catalysts , 2020, Advanced Energy Materials.

[7]  Lei Tian,et al.  Silver Single Atom in Carbon Nitride Catalyst for Highly Efficient Photocatalytic Hydrogen Evolution. , 2020, Angewandte Chemie.

[8]  Chuncheng Chen,et al.  Molecular-level understanding of the deactivation pathways during methanol photo-reforming on Pt-decorated TiO2 , 2020 .

[9]  Wei Yan,et al.  Tin diselinide a stable co-catalyst coupled with branched TiO2 fiber and g-C3N4 quantum dots for photocatalytic hydrogen evolution , 2020 .

[10]  S. Qiao,et al.  Atomic‐Level Reactive Sites for Semiconductor‐Based Photocatalytic CO2 Reduction , 2020, Advanced Energy Materials.

[11]  Z. Yin,et al.  Structural‐Phase Catalytic Redox Reactions in Energy and Environmental Applications , 2020, Advanced materials.

[12]  Z. Yin,et al.  Colloidal Single‐Layer Photocatalysts for Methanol‐Storable Solar H2 Fuel , 2019, Advanced materials.

[13]  Chunhua Zhou,et al.  Exciton-Driven Chemical Sensors based on Excitation Dependent Photoluminescent Two Dimensional SnS. , 2019, ACS applied materials & interfaces.

[14]  Zhanfeng Zheng,et al.  Enhanced photocatalytic hydrogen production from aqueous-phase methanol reforming over cyano-carboxylic bifunctionally-modified carbon nitride. , 2019, Chemical communications.

[15]  Chen Zhou,et al.  Visible light-driven the splitting of ethanol into hydrogen and acetaldehyde catalyzed by fibrous AgNPs/CdS hybrids at room temperature , 2019, Journal of the Taiwan Institute of Chemical Engineers.

[16]  Zekun Zheng,et al.  Full‐Color Chemically Modulated g‐C3N4 for White‐Light‐Emitting Device , 2019, Advanced Optical Materials.

[17]  Zhenping Zhu,et al.  Visible-Light Direct Conversion of Ethanol to 1,1-Diethoxyethane and Hydrogen over a Non-Precious Metal Photocatalyst. , 2018, Chemistry.

[18]  A. Fujishima,et al.  Localized Surface Plasmon Resonance Enhanced Photocatalytic Hydrogen Evolution via Pt@Au NRs/C3N4 Nanotubes under Visible‐Light Irradiation , 2018, Advanced Functional Materials.

[19]  Y. Hsu,et al.  TiO2-Au-Cu2O Photocathodes: Au-Mediated Z-Scheme Charge Transfer for Efficient Solar-Driven Photoelectrochemical Reduction , 2018, ACS Applied Nano Materials.

[20]  Yelong Zhang,et al.  Visible light-driven methanol dehydrogenation and conversion into 1,1-dimethoxymethane over a non-noble metal photocatalyst under acidic conditions , 2018 .

[21]  Liang Wu,et al.  Thermally triggered polyrotaxane translational motion helps proton transfer , 2018, Nature Communications.

[22]  Dehui Deng,et al.  Visible light-driven C−H activation and C–C coupling of methanol into ethylene glycol , 2018, Nature Communications.

[23]  A. Kornowski,et al.  Hexagonally Shaped Two-Dimensional Tin(II)sulfide Nanosheets: Growth Model and Controlled Structure Formation , 2018 .

[24]  Huaiguo Xue,et al.  In situ construction of fibrous AgNPs/g-C3N4 aerogel toward light-driven COx-free methanol dehydrogenation at room temperature , 2018 .

[25]  F. Tao,et al.  Consciously Constructing Heterojunction or Direct Z-Scheme Photocatalysts by Regulating Electron Flow Direction , 2018 .

[26]  Jun Pan,et al.  C-S bond induced ultrafine SnS2 dot/porous g-C3N4 sheet 0D/2D heterojunction: synthesis and photocatalytic mechanism investigation. , 2017, Dalton transactions.

[27]  A. B. Jorge,et al.  Carbon nitrides: synthesis and characterization of a new class of functional materials. , 2017, Physical chemistry chemical physics : PCCP.

[28]  Wenjun Li,et al.  In-situ synthesis of novel Z-scheme SnS(2)/BiOBr photocatalysts with superior photocatalytic efficiency under visible light. , 2017, Journal of colloid and interface science.

[29]  Jiaguo Yu,et al.  A Review of Direct Z‐Scheme Photocatalysts , 2017 .

[30]  S. Fuss The 1.5°C Target, Political Implications, and the Role of BECCS , 2017 .

[31]  Lili Lin,et al.  Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts , 2017, Nature.

[32]  William F. Lamb,et al.  Fast growing research on negative emissions , 2017 .

[33]  M. Beller,et al.  Unravelling the Mechanism of Basic Aqueous Methanol Dehydrogenation Catalyzed by Ru-PNP Pincer Complexes. , 2016, Journal of the American Chemical Society.

[34]  Jinhua Ye,et al.  In Situ Bond Modulation of Graphitic Carbon Nitride to Construct p–n Homojunctions for Enhanced Photocatalytic Hydrogen Production , 2016 .

[35]  Z. Yin,et al.  Room temperature stable COx-free H2 production from methanol with magnesium oxide nanophotocatalysts , 2016, Science Advances.

[36]  Hao-Yun Cheng,et al.  ZnO-Au-SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting. , 2016, Nanoscale.

[37]  Dongsheng Xu,et al.  Efficient Visible Light-Driven Splitting of Alcohols into Hydrogen and Corresponding Carbonyl Compounds over a Ni-Modified CdS Photocatalyst. , 2016, Journal of the American Chemical Society.

[38]  T. Aikawa,et al.  Hydrogen Production from a Methanol-Water Solution Catalyzed by an Anionic Iridium Complex Bearing a Functional Bipyridonate Ligand under Weakly Basic Conditions. , 2015, Angewandte Chemie.

[39]  G. Luderer,et al.  Energy system transformations for limiting end-of-century warming to below 1.5 °C , 2015 .

[40]  A. Borgna,et al.  XAFCA: a new XAFS beamline for catalysis research. , 2015, Journal of synchrotron radiation.

[41]  John T. S. Irvine,et al.  Structural Investigation of Graphitic Carbon Nitride via XRD and Neutron Diffraction , 2015 .

[42]  M. Jaroniec,et al.  Polymeric Photocatalysts Based on Graphitic Carbon Nitride , 2015, Advanced materials.

[43]  Zhenyi Zhang,et al.  Ultrathin hexagonal SnS2 nanosheets coupled with g-C3N4 nanosheets as 2D/2D heterojunction photocatalysts toward high photocatalytic activity , 2015 .

[44]  Ying-Chih Pu,et al.  Modulation of charge carrier dynamics of NaxH2−xTi3O7-Au-Cu2O Z-scheme nanoheterostructures through size effect , 2015 .

[45]  Ting-Ju Chiang,et al.  Effects of electron charge density and particle size of alkali metal titanate nanotube-supported Pt photocatalysts on production of H2 from neat alcohol. , 2014, Physical chemistry chemical physics : PCCP.

[46]  T. Xie,et al.  Highly Efficient CdS/WO3 Photocatalysts: Z-Scheme Photocatalytic Mechanism for Their Enhanced Photocatalytic H2 Evolution under Visible Light , 2014 .

[47]  D. Kovacheva,et al.  Effect of mesoporous silica topology on the formation of active sites in copper supported catalysts for methanol decomposition , 2014 .

[48]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[49]  X. Verykios,et al.  Kinetic and mechanistic study of the photocatalytic reforming of methanol over Pt/TiO2 catalyst , 2014 .

[50]  F. Solymosi,et al.  Photocatalytic decompositions of methanol and ethanol on Au supported by pure or N-doped TiO2 , 2013 .

[51]  Claudio Ampelli,et al.  H2 production by selective photo-dehydrogenation of ethanol in gas and liquid phase on CuOx/TiO2 nanocomposites , 2013 .

[52]  Jianrong Qiu,et al.  Synthesis and luminescence mechanism of multicolor-emitting g-C3N4 nanopowders by low temperature thermal condensation of melamine , 2013, Scientific Reports.

[53]  M. Beller,et al.  Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide , 2013, Nature.

[54]  A. Hulme,et al.  The Evans—Tishchenko Reaction: Scope and Applications , 2012 .

[55]  Geoffrey I N Waterhouse,et al.  Photoreaction of ethanol on Au/TiO2 anatase: Comparing the micro to nanoparticle size activities of the support for hydrogen production , 2010 .

[56]  G. Marbán,et al.  A highly active, selective and stable copper/cobalt-structured nanocatalyst for methanol decomposition , 2010 .

[57]  R. Li,et al.  Structural and morphological control of aligned nitrogen- doped carbon nanotubes , 2010 .

[58]  A. K. Tyagi,et al.  Photodegradation of Methanol Under UV–Visible Irradiation by Titania Dispersed on Polyester Cloth , 2010, Photochemistry and photobiology.

[59]  Scott W. Donne,et al.  Flat-Band Potential of a Semiconductor: Using the Mott Schottky Equation. , 2007 .

[60]  J. Chao,et al.  A highly active bi-crystalline photocatalyst consisting of TiO2 (B) nanotube and anatase particle for producing H2 gas from neat ethanol , 2007 .

[61]  J. Kawai,et al.  Comparison of the Sn L edge X-ray absorption spectra and the corresponding electronic structure in Sn, SnO, and SnO2 , 2004 .

[62]  W. D. Allen,et al.  Fragmentation path for hydrogen atom dissociation from methoxy radical , 2002 .

[63]  I. Fischer High-resolution photoelectron-spectroscopy of radicals , 2002 .

[64]  D. Grainger,et al.  X-ray photoelectron spectroscopy sulfur 2p study of organic thiol and disulfide binding interactions with gold surfaces , 1996 .

[65]  H. Schaefer,et al.  The weakly exothermic rearrangement of methoxy radical (CH3O⋅) to the hydroxymethyl radical (CH2OH⋅) , 1983 .

[66]  B. Sexton,et al.  Decomposition pathways of C1C4 alcohols adsorbed on platinum (111) , 1982 .

[67]  T. Jia,et al.  Rational construction of direct Z-scheme SnS/g-C3N4 hybrid photocatalyst for significant enhancement of visible-light photocatalytic activity , 2020 .

[68]  Yang Jiang,et al.  Graphitic C3N4 quantum dots for next-generation QLED displays , 2019, Materials Today.

[69]  Ren Renewables 2019 Global Status Report , 2012 .

[70]  A. Atkinson,et al.  Materials for energy , 2007 .

[71]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[72]  J. Goldemberg World energy assessment : energy and the challenge of sustainability , 2000 .