Effective protection against acute respiratory distress syndrome/sepsis injury by combined adipose-derived mesenchymal stem cells and preactivated disaggregated platelets

This study assessed whether combining adipose-derived mesenchymal stem cells (ADMSC) with preactivated, disaggregated shape-changed platelets (PreD-SCP) was superior to either therapy alone for protecting rat lung from acute respiratory distress syndrome (ARDS) complicated by sepsis. ARDS and sepsis were induced through 100% oxygen inhalation and peritoneal administration of 1.5 mg/kg lipopolysaccharide (LPS), respectively. Adult-male Sprague-Dawley rats (n=40) were randomized into sham-control (SC), ARDS-LPS, ARDS-LPS-ADMSC (1.2x106 cells), ARDS-LPS-PreD-SCP (3.0x108, intravenous administration), and ARDS-LPS-ADMS/PreD-SCP groups, and were sacrificed 72 h after 48 h ARDS induction. Lung injury scores (LIS) and collagen deposition were highest in ARDS-LPS, lowest in SC, higher in ARDS-LPS+ADMSC than in ARDS-LPS+PreD-SCP and ARDS-LPS+ADMS/PreD-SCP, and higher in ARDS-LPS+PreD-SCP than in ARDS-LPS+ADMS/PreD-SCP (all p<0.0001). Alveolar-sac numbers, oxygen saturation, endothelial marker levels, and mitochondrial cytochrome-C levels exhibited opposite patterns with respect to LIS (all p<0.001). Levels of inflammatory, oxidative-stress, apoptosis, mitochondrial/DNA damage, and MAPK and Akt signaling markers exhibited patterns identical to that of LIS (all p<0.001). Anti-oxidant and anti-inflammatory protein levels increased progressively from SC to ARDS-LPS+ADMS/PreD-SCP (all p<0.0001). These findings indicate combined ADMSC/PreD-SCP was superior to either therapy alone for protecting rat lung from ARDS-sepsis injury.