New insights into Chinese traditional handmade paper: influence of growth age on morphology and cellulose structure of phloem fibers from Pteroceltis tatarinowii

[1]  A. Potthast,et al.  Comparative hydrolysis analysis of cellulose samples and aspects of its application in conservation science , 2021, Cellulose.

[2]  M. Strlič,et al.  Characterisation and durability of contemporary unsized Xuan paper , 2020, Cellulose.

[3]  M. Ageeva,et al.  Rearrangement of the Cellulose-Enriched Cell Wall in Flax Phloem Fibers over the Course of the Gravitropic Reaction , 2020, International journal of molecular sciences.

[4]  S. Mansfield,et al.  CELLULOSE SYNTHASE INTERACTING 1 is required for wood mechanics and leaf morphology in aspen. , 2020, The Plant journal : for cell and molecular biology.

[5]  R. Sun,et al.  Unmasking the heterogeneity of carbohydrates in heartwood, sapwood, and bark of Eucalyptus. , 2020, Carbohydrate polymers.

[6]  N. Gierlinger,et al.  Wood Deformation Leads to Rearrangement of Molecules at the Nanoscale , 2020, Nano letters.

[7]  Hongqi Dai,et al.  Recyclable and Reusable Maleic Acid for Efficient Production of Cellulose Nanofibrils with Stable Performance , 2019, ACS Sustainable Chemistry & Engineering.

[8]  A. Potthast,et al.  How alkaline solvents in viscosity measurements affect data for oxidatively damaged celluloses. Cupri-ethylenediamine (CED, cuen). , 2019, Biomacromolecules.

[9]  B. Noroozi,et al.  A combined homogenization-high intensity ultrasonication process for individualizaion of cellulose micro-nano fibers from rice straw , 2019, Cellulose.

[10]  A. Kumaravel,et al.  Assessment of cellulose in bark fibers of Thespesia populnea: Influence of stem maturity on fiber characterization. , 2019, Carbohydrate polymers.

[11]  J. S. Binoj,et al.  Comprehensive characterization of natural cellulosic fiber from Coccinia grandis stem. , 2019, Carbohydrate polymers.

[12]  Inseok Chae,et al.  Probing cellulose structures with vibrational spectroscopy , 2019, Cellulose.

[13]  H. Pereira,et al.  Influence of cambial age on the bark structure of Douglas-fir , 2018, Wood Science and Technology.

[14]  V. Salnikov,et al.  Development of distinct cell wall layers both in primary and secondary phloem fibers of hemp ( Cannabis sativa L.) , 2018, Industrial Crops and Products.

[15]  Zehui Jiang,et al.  Imaging the dynamic deposition of cell wall polymer in xylem and phloem in Populus × euramericana , 2018, Planta.

[16]  Camille Goudenhooft,et al.  Investigation of the Mechanical Properties of Flax Cell Walls during Plant Development: The Relation between Performance and Cell Wall Structure , 2018 .

[17]  R. J. Weston,et al.  Chinese handmade mulberry paper: Generation of reactive oxygen species and sensitivity to photodegradation , 2017 .

[18]  N. Byrne,et al.  Utilization of cotton waste for regenerated cellulose fibres: Influence of degree of polymerization on mechanical properties. , 2017, Carbohydrate polymers.

[19]  E. N. Makarova,et al.  Seasonal dynamics of polysaccharides in Norway spruce (Picea abies). , 2017, Carbohydrate polymers.

[20]  H. Pereira,et al.  Cork-Containing Barks—A Review , 2017, Front. Mater..

[21]  P. Baas,et al.  IAWA List of Microscopic Bark Features , 2016 .

[22]  C. Baley,et al.  Plant cell walls to reinforce composite materials: Relationship between nanoindentation and tensile modulus , 2016 .

[23]  Mohd Sapuan Salit,et al.  A Study on Chemical Composition, Physical, Tensile, Morphological, and Thermal Properties of Roselle Fibre: Effect of Fibre Maturity , 2015 .

[24]  C. R. P. Narciso,et al.  Microfibril angle of "Eucalyptus grandis" wood in relation to the cambial age , 2014 .

[25]  K. Takabe,et al.  Xylan deposition and lignification in the multi-layered cell walls of phloem fibres in Mallotus japonicus (Euphorbiaceae). , 2014, Tree physiology.

[26]  B. Pontoire,et al.  Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17) , 2013 .

[27]  Ying Tang,et al.  Fluorescence and photodegradation of Xuan paper: The photostability of traditional Chinese handmade paper , 2013 .

[28]  T. Nishino,et al.  Comparative effect of mechanical beating and nanofibrillation of cellulose on paper properties made from bagasse and softwood pulps. , 2013, Carbohydrate polymers.

[29]  B. Holst,et al.  Determining the fibrillar orientation of bast fibres with polarized light microscopy: the modified Herzog test (red plate test) explained , 2013, Journal of microscopy.

[30]  R. Sun,et al.  Distribution of lignin and cellulose in compression wood tracheids of Pinus yunnanensis determined by fluorescence microscopy and confocal Raman microscopy , 2013 .

[31]  A. French,et al.  Cellulose polymorphy, crystallite size, and the Segal Crystallinity Index , 2013, Cellulose.

[32]  K. Takabe,et al.  Anatomy and lignin distribution in reaction phloem fibres of several Japanese hardwoods. , 2012, Annals of botany.

[33]  K. Ruel,et al.  Crystalline and amorphous cellulose in the secondary walls of Arabidopsis. , 2012, Plant science : an international journal of experimental plant biology.

[34]  Notburga Gierlinger,et al.  Imaging of plant cell walls by confocal Raman microscopy , 2012, Nature Protocols.

[35]  Huiren Hu,et al.  Influences of configuration and molecular weight of hemicelluloses on their paper-strengthening effects , 2012 .

[36]  R. Santana,et al.  Thermal decomposition of wood: influence of wood components and cellulose crystallite size. , 2012, Bioresource technology.

[37]  V. Salnikov,et al.  Galactosidase of plant fibers with gelatinous cell wall: Identification and localization , 2012, Russian Journal of Plant Physiology.

[38]  S. Engelsen,et al.  Characterisation of the arabinose-rich carbohydrate composition of immature and mature marama beans (Tylosema esculentum). , 2011, Phytochemistry.

[39]  B. Holst,et al.  A procedure for identifying textile bast fibres using microscopy: flax, nettle/ramie, hemp and jute. , 2010, Ultramicroscopy.

[40]  V. Salnikov,et al.  Specific type of secondary cell wall formed by plant fibers , 2010, Russian Journal of Plant Physiology.

[41]  J. Łojewska,et al.  Evaluating paper degradation progress. Cross-linking between chromatographic, spectroscopic and chemical results , 2010 .

[42]  Ingo Burgert,et al.  Cell wall features with regard to mechanical performance. A review COST Action E35 2004–2008: Wood machining – micromechanics and fracture , 2009 .

[43]  Zhang Yang,et al.  Use of Nanoindentation and Silviscan to Determine the Mechanical Properties of 10 Hardwood Species , 2009 .

[44]  L. Leney A Technique for Measuring Fibril Angle Using Polarized Light , 2007 .

[45]  Ingo Burgert,et al.  Properties of chemically and mechanically isolated fibres of spruce (Picea abies [L.] Karst.). Part 1: Structural and chemical characterisation , 2005 .

[46]  C. Ververis,et al.  Fiber dimensions, lignin and cellulose content of various plant materials and their suitability for paper production , 2004 .

[47]  Robert Evans,et al.  Direct Effects of Wood Characteristics on Pulp and Handsheet Properties of Eucalyptus globulus , 2002 .

[48]  Stephen J. Eichhorn,et al.  The Young's modulus of a microcrystalline cellulose , 2001 .

[49]  G. Pharr,et al.  An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments , 1992 .

[50]  L. Segal',et al.  An Empirical Method for Estimating the Degree of Crystallinity of Native Cellulose Using the X-Ray Diffractometer , 1959 .

[51]  Haimei You,et al.  Phytosociological Study of Pteroceltis tatarinowii Forest in the Deciduous-Forest Zone of Eastern China , 2018 .

[52]  H. Lioe,et al.  Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures , 2014 .

[53]  J. Sugiyama,et al.  Cell wall characterization of windmill palm (Trachycarpus Fortunei) fibers and its functional implications , 2013 .

[54]  L. Donaldson Microfibril Angle: Measurement, Variation and Relationships – A Review , 2008 .

[55]  Notburga Gierlinger,et al.  The potential of Raman microscopy and Raman imaging in plant research , 2007 .

[56]  Amie D. Sluiter,et al.  Determination of Structural Carbohydrates and Lignin in Biomass , 2004 .