Study of the Galactic radio sources in the SCORPIO survey resolved by ATCA at 2.1 GHz

We present a catalogue of a large sample of extended radio sources in the SCORPIO field, observed and resolved by the Australia Telescope Compact Array. SCORPIO, a pathfinder project for addressing the early operations of the Australia SKA Pathfinder, is a survey of ∼5 square degrees between 1.4 and 3.1 GHz, centered at l = 343.5○, b = 0.75○ and with an angular resolution of about 10 arcsec. It is aimed at understanding the scientific and technical challenges to be faced by future Galactic surveys. With a mean sensitivity around $100\ \mu \mathrm{Jy\ beam}^{-1}$ and the possibility to recover angular scales at least up to 4 arcmin, we extracted 99 extended sources, 35 of them detected for the first time. Among the 64 known sources 55 had at least a tentative classification in literature. Studying the radio morphology and comparing the radio emission with infrared we propose as candidates 6 new H ii regions, 2 new planetary nebulae, 2 new luminous blue variable or Wolf–Rayet stars and 3 new supernova remnants. This study provides an overview of the potentiality of future radio surveys in terms of Galactic source extraction and characterization and a discussion on the difficulty to reduce and analyze interferometric data on the Galactic plane.

[1]  R. Norris,et al.  SCORPIO - II. Spectral indices of weak Galactic radio sources , 2017, 1710.04702.

[2]  Catania,et al.  Radio variability and non-thermal components in stars evolving towards planetary nebulae , 2017, 1703.06005.

[3]  S. Molinari,et al.  Exploring the multifaceted circumstellar environment of the luminous blue variable HR Carinae , 2016, 1612.05039.

[4]  Max Tegmark,et al.  An Improved Model of Diffuse Galactic Radio Emission from 10 MHz to 5 THz , 2016, 1605.04920.

[5]  N. Flagey,et al.  High-resolution Very Large Array observations of 18 MIPSGAL bubbles , 2016, 1609.00003.

[6]  R. P. Norris,et al.  Automated detection of extended sources in radio maps: progress from the SCORPIO survey , 2016, 1605.01852.

[7]  M. Ressler,et al.  AN APPARENT PRECESSING HELICAL OUTFLOW FROM A MASSIVE EVOLVED STAR: EVIDENCE FOR BINARY INTERACTION , 2015, 1512.07639.

[8]  R. Norris,et al.  SCORPIO: a deep survey of radio emission from the stellar life-cycle , 2015, 1506.04531.

[9]  C. Trigilio,et al.  Study of the extended radio emission of two supernova remnants and four planetary nebulae associated with MIPSGAL bubbles , 2014, 1410.1315.

[10]  D. A. Green,et al.  A catalogue of 294 Galactic supernova remnants , 2014, 1409.0637.

[11]  M. Irwin,et al.  First release of the IPHAS catalogue of new extended planetary nebulae , 2014, 1407.0109.

[12]  N. Flagey,et al.  A radio characterization of Galactic compact bubbles , 2013, 1311.4753.

[13]  S. Molinari,et al.  Identifying Type IIn supernova progenitors in our Galaxy: the circumstellar environment of the Galactic luminous blue variable candidate Gal 026.47+0.02 , 2012 .

[14]  C. Trigilio,et al.  Radio detection of nebulae around four luminous blue variable stars in the Large Magellanic Cloud , 2012 .

[15]  C. Evans,et al.  Binary Interaction Dominates the Evolution of Massive Stars , 2012, Science.

[16]  D. A. García-Hernández,et al.  THE NATURE OF DUST IN COMPACT GALACTIC PLANETARY NEBULAE FROM SPITZER SPECTRA , 2012, 1205.3829.

[17]  D. J. Saikia,et al.  EMU: Evolutionary Map of the Universe , 2011, Publications of the Astronomical Society of Australia.

[18]  India,et al.  The Australia Telescope Compact Array Broadband Backend (CABB): Description & First Results ⋆ , 2011, 1105.3532.

[19]  Anna M. M. Scaife,et al.  10C survey of radio sources at 15.7 GHz – I. Observing, mapping and source extraction★ , 2010, 1012.3711.

[20]  Max Tegmark,et al.  A model of diffuse Galactic radio emission from 10 MHz to 100 GHz , 2008, 0802.1525.

[21]  A. Acker,et al.  MASH-II: more planetary nebulae from the AAO/UKST Hα survey , 2007, 0711.2923.

[22]  A. Zijlstra,et al.  Magnetic fields in planetary nebulae and post-AGB nebulae , 2007, astro-ph/0701054.

[23]  J. Köppen,et al.  The Macquarie/AAO/Strasbourg Hα Planetary Nebula Catalogue: MASH , 2006 .

[24]  M. J. Wolff,et al.  The Bubbling Galactic Disk , 2006 .

[25]  Maxwell MoeOrsola De Marco Do Most Planetary Nebulae Derive from Binaries? I. Population Synthesis Model of the Galactic Planetary Nebula Population Produced by Single Stars and Binaries , 2006, astro-ph/0606354.

[26]  R. Davies,et al.  Towards a free–free template for CMB foregrounds , 2003, astro-ph/0302024.

[27]  E. Keto On the Evolution of Ultracompact H II Regions , 2002 .

[28]  M. Egan,et al.  An Infrared Ring Nebula around MSX5C G358.5391+00.1305: The True Nature of Suspected Planetary Nebula Wray 17-96 Determined via Direct Imaging and Spectroscopy , 2002 .

[29]  S. White,et al.  Radio images of four luminous blue variable stars , 2002 .

[30]  K. Sunkwo,et al.  The Origin and Evolution of Planetary Nebulae , 2000 .

[31]  M. Wright,et al.  A retrospective view of Miriad , 2006, astro-ph/0612759.

[32]  C. Bennett,et al.  Galactic fine-structure lines - Morphologies of the warm ionized interstellar medium , 1993 .

[33]  A. Agnès,et al.  Strasbourg-ESO Catalogue of Galactic Planetary Nebulae , 1993 .

[34]  J. Baldwin,et al.  The spectrum of the radio background between 13 and 404 MHz , 1967 .