Optimal control of a nonlinear fed-batch fermentation process using model predictive approach

Bioprocesses are involved in producing different pharmaceutical products. Complicated dynamics, nonlinearity and non-stationarity make controlling them a very delicate task. The main control goal is to get a pure product with a high concentration, which commonly is achieved by regulating temperature or pH at certain levels. This paper discusses model predictive control (MPC) based on a detailed unstructured model for penicillin production in a fed-batch fermentor. The novel approach used here is to use the inverse of penicillin concentration as a cost function instead of a common quadratic regulating one in an optimization block. The result of applying the obtained controller has been displayed and compared with the results of an auto-tuned PID controller used in previous works. Moreover, to avoid high computational cost, the nonlinear model is substituted with neuro-fuzzy piecewise linear models obtained from a method called locally linear model tree (LoLiMoT).

[1]  R.S. Parker Nonlinear model predictive control of a continuous bioreactor using approximate data-driven models , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[2]  John R. Wolberg,et al.  Data Analysis Using the Method of Least Squares: Extracting the Most Information from Experiments , 2005 .

[3]  F. Kargı,et al.  Bioprocess Engineering: Basic Concepts , 1991 .

[4]  G. Roux,et al.  Modelling and adaptive predictive control of a continuous fermentation process , 1992 .

[5]  Toshiomi Yoshida,et al.  An expert approach for control of fermentation processes as variable structure plants , 1990 .

[6]  R. Aguilar,et al.  Dynamic behavior of a continuous stirred bioreactor under control input saturation , 1998 .

[7]  Yasuhisa Abe,et al.  Application of fuzzy control theory to the sake brewing process , 1991 .

[8]  Rodolfo Dondo,et al.  Optimal control of a batch bioreactor: a study on the use of an imperfect model , 2001 .

[9]  Jens Nielsen,et al.  Physiological Engineering Aspects Of Penicillium Chrysogenum , 1997 .

[10]  Hisbullah,et al.  Design of a Fuzzy Logic Controller for Regulating Substrate Feed to Fed-Batch Fermentation , 2003 .

[11]  Joseph S. Alford,et al.  Bioprocess control: Advances and challenges , 2006, Comput. Chem. Eng..

[12]  Alain Vande Wouwer,et al.  Robust adaptive control of yeast fed-batch cultures , 2008, Comput. Chem. Eng..

[13]  Cihan Karakuzu,et al.  Modelling, on-line state estimation and fuzzy control of production scale fed-batch baker's yeast fermentation , 2006 .

[14]  Taizo Hanai,et al.  Temperature control of Ginjo sake mashing process by automatic fuzzy modeling using fuzzy neural networks , 1998 .

[15]  P R Patnaik Penicillin Fermentation: Mechanisms and Models for Industrial-Scale Bioreactors , 2001, Critical reviews in microbiology.

[16]  Rafael Martínez-Guerra,et al.  Robust PI2 Controller for Continuous Bioreactors , 2001 .

[17]  Kazuyuki Shimizu,et al.  Neuro-Fuzzy Control of Bioreactor Systems with Pattern Recognition , 1992 .

[18]  J J Heijnen,et al.  Application of balancing methods in modeling the penicillin fermentation , 1979, Biotechnology and bioengineering.

[19]  M. Reuss,et al.  A mechanistic model for penicillin production , 2007 .

[20]  Henry Leung,et al.  Prediction of noisy chaotic time series using an optimal radial basis function neural network , 2001, IEEE Trans. Neural Networks.

[21]  Fumio Fukui,et al.  Fuzzy control in microbial production of ML-236B, a precursor of pravastatin sodium , 1993 .

[22]  A. J. Morris,et al.  Modelling and adaptive control of fed-batch penicillin fermentation , 1986 .

[23]  Panagiotis D. Christofides,et al.  Stabilization of nonlinear systems with state and control constraints using Lyapunov-based predictive control , 2005, ACC.

[24]  A. Handa-Corrigan,et al.  Monoclonal antibody production in hollow-fiber bioreactors : process control and validation strategies for manufacturing industry , 1995 .

[25]  Panagiotis D. Christofides,et al.  Predictive control of switched nonlinear systems with scheduled mode transitions , 2005, IEEE Transactions on Automatic Control.

[26]  C L Cooney,et al.  Growth monitoring and control through computer‐aided on‐line mass balancing in a fed‐batch penicillin fermentation , 1983, Biotechnology and bioengineering.

[27]  Michio Sugeno,et al.  Fuzzy identification of systems and its applications to modeling and control , 1985, IEEE Transactions on Systems, Man, and Cybernetics.

[28]  Gabriela Espinosa,et al.  Optimization of invertase production in a fed-batch bioreactor using simulation based dynamic programming coupled with a neural classifier , 2007, Comput. Chem. Eng..

[29]  Prashant Mhaskar,et al.  Robust Model Predictive Control Design for Fault-Tolerant Control of Process Systems , 2006 .

[30]  A. Johnson,et al.  The control of fed-batch fermentation processes - A survey , 1987, Autom..

[31]  H Honda,et al.  Fuzzy control of bioprocess. , 2000, Journal of bioscience and bioengineering.

[32]  Robert S. Parker,et al.  Fed-batch bioreactor control using a multi-scale model , 2003, Proceedings of the 2003 American Control Conference, 2003..

[33]  Toshiomi Yoshida,et al.  Hyperproduction of phenylalanine by Escherichia coli: application of a temperature-controllable expression vector carrying the repressor-promoter system of bacteriophage lambda , 1987 .

[34]  A. Munack,et al.  Adaptive predictive control for the fed batch fermentation process , 1994 .

[35]  Teresa J. Cutright,et al.  Control of a continuous bioreactor using model predictive control , 2005 .

[36]  Takeaki Kariya,et al.  Generalized Least Squares , 2004 .

[37]  Eduardo F. Camacho,et al.  Introduction to Model Based Predictive Control , 1999 .

[38]  Fuli Wang,et al.  Stage-based soft-transition multiple PCA modeling and on-line monitoring strategy for batch processes , 2007 .

[39]  E. Camacho,et al.  Generalized Predictive Control , 2007 .

[40]  Toshiomi Yoshida,et al.  A knowledge-based pattern recognition approach for real-time diagnosis and control of fermentation processes as variable structure plants , 1991, IEEE Trans. Syst. Man Cybern..

[41]  S. J. Parulekar,et al.  A morphologically structured model for penicillin production , 2002, Biotechnology and bioengineering.

[42]  K. Lim,et al.  Generalized Predictive Control of , 2022 .

[43]  David W. Clarke,et al.  Generalized predictive control - Part I. The basic algorithm , 1987, Autom..

[44]  Prashant Mhaskar,et al.  Cell Population Modeling and Parameter Estimation for Continuous Cultures of Saccharomyces cerevisiae , 2002, Biotechnology progress.

[45]  Karl Johan Åström,et al.  Theory and applications of adaptive control - A survey , 1983, Autom..

[46]  R. Maciel Filho,et al.  Production optimization with operating constraints for a fed-batch reactor with DMC predictive control , 1999 .

[47]  YangQuan Chen,et al.  Optimization of a fed-batch fermentation process control competition problem using the NEOS server , 2003 .

[48]  David F. Ollis,et al.  Biochemical Engineering Fundamentals , 1976 .

[49]  Jun-Ichi Horiuchi,et al.  Fuzzy modeling and control of biological processes. , 2002, Journal of bioscience and bioengineering.

[50]  Kazuyuki Shimizu,et al.  An overview on the control system design of bioreactors , 1993 .

[51]  J. Nielsen,et al.  Bioreaction Engineering Principles , 1994, Springer US.

[52]  O. Nelles Nonlinear System Identification , 2001 .

[53]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[54]  P. Mhaskar,et al.  Enhanced stability regions for model predictive control of nonlinear process systems , 2008 .

[55]  Gülnur Birol,et al.  A modular simulation package for fed-batch fermentation: penicillin production , 2002 .