On the Hausdorff distance between the Heaviside step function and Verhulst logistic function

In this note we prove more precise estimates for the approximation of the step function by sigmoidal logistic functions. Numerical examples, illustrating our results are given, too.

[1]  Feilong Cao,et al.  The approximation operators with sigmoidal functions , 2009, Comput. Math. Appl..

[2]  Roumen Anguelov,et al.  On the Normed Linear Space of Hausdorff Continuous Functions , 2005, LSSC.

[3]  B Sendov,et al.  THE EXACT ASYMPTOTIC BEHAVIOR OF THE BEST APPROXIMATION BY ALGEBRAIC AND TRIGONOMETRIC POLYNOMIALS IN THE HAUSDORFF METRIC , 1972 .

[4]  Alberto Maria Bersani,et al.  Is there anything left to say on enzyme kinetic constants and quasi-steady state approximation? , 2012, Journal of Mathematical Chemistry.

[5]  Svetoslav Markov,et al.  Theoretical and computational studies of some bioreactor models , 2012, Comput. Math. Appl..

[6]  Svetoslav Markov,et al.  On the Approximation of the Cut and Step Functions by Logistic and Gompertz Functions , 2015 .

[7]  Roumen Anguelov,et al.  Hausdorff Continuous Interval Functions and Approximations , 2014, SCAN.

[8]  A. G. McKendrick,et al.  XLV.—The Rate of Multiplication of Micro-organisms: A Mathematical Study , 1912 .

[9]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[10]  Marianela Carrillo,et al.  A new approach to modelling sigmoidal curves , 2002 .

[11]  P. Verhulst Notice sur la loi que la population pursuit dans son accroissement , 1838 .

[12]  Renato Spigler,et al.  Approximation results for neural network operators activated by sigmoidal functions , 2013, Neural Networks.

[13]  Mihai V. Putz,et al.  Logistic vs. W-Lambert Information in Quantum Modeling of Enzyme Kinetics , 2011, Int. J. Chemoinformatics Chem. Eng..

[14]  Kyurkchiev Nikolay,et al.  Sigmoid Functions: Some Approximation and Modelling Aspects , 2015 .

[15]  D. Costarelli,et al.  Constructive Approximation by Superposition of Sigmoidal Functions , 2013 .

[16]  P. Verhulst,et al.  Deuxième Mémoire sur la Loi d'Accroissement de la Population. , 2022 .

[17]  Svetoslav Markov,et al.  On the Mathematical Modelling of EPS Production by a Thermophilic Bacterium , 2014 .

[18]  Jan Harm van der Walt,et al.  The Linear Space of Hausdorff Continuous Interval Functions , 2013 .

[19]  Roumen Anguelov,et al.  The Set of Hausdorff Continuous Functions— The Largest Linear Space of Interval Functions , 2006, Reliab. Comput..

[20]  Feilong Cao,et al.  Approximation by network operators with logistic activation functions , 2015, Appl. Math. Comput..

[21]  József Dombi,et al.  The approximation of piecewise linear membership functions and lukasiewicz operators , 2005, Fuzzy Sets Syst..

[22]  Svetoslav Markov,et al.  Sigmoidal Functions: Some Computational and Modelling Aspects , 2015 .

[23]  Svetoslav Marinov Markov Cell Growth Models Using Reaction Schemes: Batch Cultivation , 2014 .

[24]  I A Basheer,et al.  Artificial neural networks: fundamentals, computing, design, and application. , 2000, Journal of microbiological methods.

[25]  J. Traub Iterative Methods for the Solution of Equations , 1982 .