Nonlinear electromagnetic response of graphene: frequency multiplication and the self-consistent-field effects

Graphene is a recently discovered carbon-based material with unique physical properties. This is a monolayer of graphite, and the two-dimensional electrons and holes in it are described by the effective Dirac equation with a vanishing effective mass. As a consequence, the electromagnetic response of graphene is predicted to be strongly nonlinear. We develop a quasi-classical kinetic theory of the nonlinear electromagnetic response of graphene, taking into account the self-consistent-field effects. The response of the system to both harmonic and pulse excitation is considered. The frequency multiplication effect, resulting from the nonlinearity of the electromagnetic response, is studied under realistic experimental conditions. The frequency upconversion efficiency is analyzed as a function of the applied electric field and parameters of the samples. Possible applications of graphene in terahertz electronics are discussed.

[1]  Qing Hu,et al.  DOE-NSF-NIH Workshop on Opportunities in THz Science, February 12-14, 2004 , 2004 .

[2]  Shur,et al.  Shallow water analogy for a ballistic field effect transistor: New mechanism of plasma wave generation by dc current. , 1993, Physical review letters.

[3]  尾辻 泰一 Plasma waves in two-dimensional electron-hole system in gated graphene heterostructures , 2007 .

[4]  Oleg V. Kibis,et al.  Terahertz applications of carbon nanotubes , 2008 .

[5]  G. Slepyan,et al.  Third-order optical nonlinearity in single-wall carbon nanotubes , 2006 .

[6]  K. Klitzing,et al.  Observation of electron–hole puddles in graphene using a scanning single-electron transistor , 2007, 0705.2180.

[7]  Antti V. Räisänen,et al.  Frequency multipliers for millimeter and submillimeter wavelengths , 1992, Proc. IEEE.

[8]  C. Berger,et al.  Magnetospectroscopy of epitaxial few-layer graphene , 2007, 0704.0585.

[9]  V. Gusynin,et al.  Anomalous absorption line in the magneto-optical response of graphene. , 2006, Physical review letters.

[10]  S. A. Mikhailov,et al.  Non-linear electromagnetic response of graphene , 2007, 0704.1909.

[11]  V P Gusynin,et al.  Unconventional integer quantum Hall effect in graphene. , 2005, Physical review letters.

[12]  G. Semenoff,et al.  Condensed-Matter Simulation of a Three-Dimensional Anomaly , 1984 .

[13]  M. Portnoi,et al.  Generation of terahertz radiation by hot electrons in carbon nanotubes. , 2007, Nano letters.

[14]  K. Novoselov,et al.  Cyclotron resonance study of the electron and hole velocity in graphene monolayers , 2007, 0704.0410.

[15]  Mikhailov Radiative decay of collective excitations in an array of quantum dots. , 1996, Physical Review B (Condensed Matter).

[16]  V. Fal’ko,et al.  Optical and magneto-optical far-infrared properties of bilayer graphene. , 2006, cond-mat/0610673.

[17]  V. P. Gusynin,et al.  Transport of Dirac quasiparticles in graphene: Hall and optical conductivities , 2006 .

[18]  Ingolf V. Hertel,et al.  Experimental and theoretical study of third-order harmonic generation in carbon nanotubes , 2002 .

[19]  Erich Gornik,et al.  Far infrared emission from plasma oscillations of Si inversion layers , 1980 .

[20]  A. Mirlin,et al.  Electron transport in disordered graphene , 2006 .

[21]  M. Katsnelson Graphene: Carbon in Two Dimensions , 2006, cond-mat/0612534.

[22]  F. Guinea,et al.  Dynamical polarization of graphene at finite doping , 2006 .

[23]  V. Fal’ko,et al.  Random resistor network model of minimal conductivity in graphene. , 2007, Physical review letters.

[24]  V. Ryzhii Terahertz Plasma Waves in Gated Graphene Heterostructures , 2006 .

[25]  Kentaro Nomura,et al.  Quantum transport of massless Dirac fermions. , 2007, Physical review letters.

[26]  S. Mikhailov,et al.  New electromagnetic mode in graphene. , 2007, Physical review letters.

[27]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[28]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[29]  P. Kim,et al.  Experimental observation of the quantum Hall effect and Berry's phase in graphene , 2005, Nature.

[30]  Oskar Vafek Thermoplasma polariton within scaling theory of single-layer graphene. , 2006, Physical review letters.

[31]  K. Ziegler Minimal conductivity of graphene : Nonuniversal values from the Kubo formula , 2007 .

[32]  L. Falkovsky,et al.  Optical far-infrared properties of a graphene monolayer and multilayer , 2007, 0707.1386.

[33]  D. Tsui,et al.  Far‐infrared emission spectroscopy of hot two‐dimensional plasmons in Al0.3Ga0.7As/GaAs heterojunctions , 1995 .

[34]  J. Slonczewski,et al.  Band Structure of Graphite , 1958 .

[35]  Robust transport properties in graphene. , 2006, Physical review letters.

[36]  Superlattice properties of carbon nanotubes in a transverse electric field , 2005, cond-mat/0501472.

[37]  J. Faist,et al.  Quantum cascade laser: a unipolar intersubband semiconductor laser , 1994, Proceedings of IEEE 14th International Semiconductor Laser Conference.

[38]  S. A. Mikhailov Microwave-induced magnetotransport phenomena in two-dimensional electron systems : Importance of electrodynamic effects , 2004, cond-mat/0405136.

[39]  P. Kim,et al.  Infrared spectroscopy of Landau levels of graphene. , 2007, Physical Review Letters.

[40]  C. Beenakker,et al.  Sub-Poissonian shot noise in graphene. , 2006, Physical review letters.

[41]  U Zeitler,et al.  Room-Temperature Quantum Hall Effect in Graphene , 2007, Science.

[42]  A. Geim,et al.  Two-dimensional gas of massless Dirac fermions in graphene , 2005, Nature.

[43]  M. Shur,et al.  Resonant detection of subterahertz and terahertz radiation by plasma waves in submicron field-effect transistors , 2002 .

[44]  Kentaro Nomura,et al.  Quantum Hall ferromagnetism in graphene. , 2006, Physical review letters.

[45]  S. A. Mikhailov Plasma instability and amplification of electromagnetic waves in low-dimensional electron systems , 1998, cond-mat/9801045.

[46]  S. Sarma,et al.  Dielectric function, screening, and plasmons in two-dimensional graphene , 2006, cond-mat/0610561.

[47]  L. Falkovsky,et al.  Space-time dispersion of graphene conductivity , 2006, cond-mat/0606800.

[48]  P. Wallace The Band Theory of Graphite , 1947 .

[49]  V. P. Gusynin,et al.  Sum Rules for the Optical and Hall Conductivity in Graphene , 2007 .

[50]  Michael S. Shur,et al.  Plasma Wave Electronics , 2003 .

[51]  V. Gusynin,et al.  Magneto-optical conductivity in graphene , 2007, 0705.3783.

[52]  N. Peres,et al.  Fine Structure Constant Defines Visual Transparency of Graphene , 2008, Science.

[53]  N. M. R. Peres,et al.  Electronic properties of disordered two-dimensional carbon , 2006 .

[54]  Oleg V. Kibis,et al.  Carbon nanotubes: A new type of emitter in the terahertz range , 2005 .

[55]  T. Chakraborty,et al.  COLLECTIVE EXCITATIONS OF DIRAC ELECTRONS IN GRAPHENE , 2006, cond-mat/0611465.

[56]  Johan Nilsson,et al.  Electronic properties of graphene multilayers. , 2006, Physical review letters.

[57]  A. Kuzmenko,et al.  Universal optical conductance of graphite. , 2007, Physical review letters.

[58]  M. I. Katsnelson Zitterbewegung, chirality, and minimal conductivity in graphene , 2006 .

[59]  M L Sadowski,et al.  Landau level spectroscopy of ultrathin graphite layers. , 2006, Physical review letters.

[60]  Sergey Mikhailov,et al.  New physical principle of detecting electromagnetic radiation , 2004, SPIE Security + Defence.

[61]  T. Ohta,et al.  Quasiparticle dynamics in graphene , 2007 .

[62]  Polina P. Kuzhir,et al.  Generation and Propagation of Electromagnetic Waves in Carbon Nanotubes: New Propositon for Optoelectronics and Bio‐medical Applications , 2007 .

[63]  Ingolf V. Hertel,et al.  Highly efficient high-order harmonic generation by metallic carbon nanotubes , 1999 .

[64]  H. Nakano,et al.  Zero modes of tight-binding electrons on the honeycomb lattice , 2006, cond-mat/0604433.

[65]  P. Kim,et al.  Cyclotron resonance in bilayer graphene. , 2008, Physical review letters.

[66]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[67]  M I Katsnelson,et al.  Strong suppression of weak localization in graphene. , 2006, Physical review letters.

[68]  V P Gusynin,et al.  Unusual microwave response of dirac quasiparticles in graphene. , 2006, Physical review letters.

[69]  Mikhail I. Dyakonov,et al.  Plasma Wave Electronics for Terahertz Applications , 2001 .

[70]  Sergey Mikhailov,et al.  Electromagnetic response of electrons in graphene: Non-linear effects , 2008 .

[71]  Sergey Mikhailov,et al.  Miniature quantum-well microwave spectrometer operating at liquid-nitrogen temperatures , 2005 .

[72]  Landauer conductance and twisted boundary conditions for Dirac fermions , 2006, cond-mat/0610598.