Design methodology of decimation filters for oversampled ADC based on quadratic programming

A design methodology for oversampled analog-to-digital converter decimation filters is presented. The methodology tackles the finite-impulse-response (FIR) filter design problem by formulating a quadratic programming problem that minimizes the integral of the aliased noise subject to the passband and stopband constraints. The approach offers a design whose response is optimized to meet arbitrary quantization noise power spectral density and anti-alias requirements. Because the projected Hessian matrix of the objective function is positive definite, the quadratic function has a unique minimum. The methodology is applied to design filters for different requirements and the performance is compared to conventional approaches. >

[1]  Robert W. Adams Companded predictive delta modulation: a low-cost conversion technique for digital recording , 1984 .

[2]  J. Bunch,et al.  A computational method for the indefinite quadratic programming problem , 1980 .

[3]  Robert W. Brodersen,et al.  Area-efficient multichannel oversampled PCM voice-band coder , 1988 .

[4]  James C. Candy,et al.  Decimation for Sigma Delta Modulation , 1986, IEEE Trans. Commun..

[5]  James C. Candy,et al.  A Use of Double Integration in Sigma Delta Modulation , 1985, IEEE Trans. Commun..

[6]  Atsushi Iwata,et al.  A 16-bit oversampling A-to-D conversion technology using triple-integration noise shaping , 1987 .

[7]  Bosco Leung Decimation filters for oversampled analog to digital converters based on quadratic programming , 1990, IEEE International Symposium on Circuits and Systems.

[8]  C. Piguet,et al.  On the use of modulo arithmetic comb filters in sigma delta modulators , 1988, ICASSP-88., International Conference on Acoustics, Speech, and Signal Processing.

[9]  P. Defraeye,et al.  A 3-/spl mu/m CMOS Digital Codec with Programmable Echo Cancellation and Gain Setting , 1985, IEEE Journal of Solid-State Circuits.

[10]  B. Leung,et al.  Multibit Sigma - Delta A/D converter incorporating a novel class of dynamic element matching techniques , 1992 .

[11]  G. W. Medlin,et al.  Lagrange multiplier approach to the design of FIR filters for multirate applications , 1988 .

[12]  Gabor C. Temes,et al.  Architectures for high-order multibit Sigma delta modulators , 1990, IEEE International Symposium on Circuits and Systems.

[13]  K. Shenoi,et al.  Design Methodology for ΣΔM , 1983, IEEE Trans. Commun..

[14]  K.C.-H. Chao,et al.  A higher order topology for interpolative modulators for oversampling A/D converters , 1990 .

[15]  Maurice G. Bellanger,et al.  Digital processing of signals: Theory and practice , 1984 .

[16]  J. Candy,et al.  The Structure of Quantization Noise from Sigma-Delta Modulation , 1981 .

[17]  T. Saramaki,et al.  Multiplier-free decimator algorithms for superresolution oversampled converters , 1990, IEEE International Symposium on Circuits and Systems.

[18]  Mordecai Avriel,et al.  Nonlinear programming , 1976 .

[19]  Atsushi Iwata,et al.  Oversampling A-to-D and D-to-A converters with multistage noise shaping modulators , 1988, IEEE Trans. Acoust. Speech Signal Process..