Protein backbone and sidechain torsion angles predicted from NMR chemical shifts using artificial neural networks

A new program, TALOS-N, is introduced for predicting protein backbone torsion angles from NMR chemical shifts. The program relies far more extensively on the use of trained artificial neural networks than its predecessor, TALOS+. Validation on an independent set of proteins indicates that backbone torsion angles can be predicted for a larger, ≥90 % fraction of the residues, with an error rate smaller than ca 3.5 %, using an acceptance criterion that is nearly two-fold tighter than that used previously, and a root mean square difference between predicted and crystallographically observed (ϕ, ψ) torsion angles of ca 12º. TALOS-N also reports sidechain χ1 rotameric states for about 50 % of the residues, and a consistency with reference structures of 89 %. The program includes a neural network trained to identify secondary structure from residue sequence and chemical shifts.

[1]  R. Mallion,et al.  Ring current theories in nuclear magnetic resonance , 1979 .

[2]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[3]  Hazime Saitô,et al.  Conformation‐dependent 13C chemical shifts: A new means of conformational characterization as obtained by high‐resolution solid‐state 13C NMR , 1986 .

[4]  C. Bugg,et al.  Structure of ubiquitin refined at 1.8 A resolution. , 1987, Journal of molecular biology.

[5]  A. Bax,et al.  Empirical correlation between protein backbone conformation and C.alpha. and C.beta. 13C nuclear magnetic resonance chemical shifts , 1991 .

[6]  F. Richards,et al.  Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. , 1991, Journal of molecular biology.

[7]  Analysis of .chi.1 rotamer populations from NMR data by the CUPID method , 1992 .

[8]  W. M. Westler,et al.  The "CUPID" method for calculating the continuous probability distribution of rotamers from NMR data , 1992 .

[9]  E. Oldfield,et al.  Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. , 1993, Science.

[10]  B. Rost,et al.  Prediction of protein secondary structure at better than 70% accuracy. , 1993, Journal of molecular biology.

[11]  M. Williamson,et al.  Empirical Comparisons of Models for Chemical-Shift Calculation in Proteins , 1993 .

[12]  Roland L. Dunbrack,et al.  Conformational analysis of the backbone-dependent rotamer preferences of protein sidechains , 1994, Nature Structural Biology.

[13]  Angela M. Gronenborn,et al.  The Impact of Direct Refinement against 13Cα and 13Cβ Chemical Shifts on Protein Structure Determination by NMR , 1995 .

[14]  D. Case Calibration of ring-current effects in proteins and nucleic acids , 1995, Journal of biomolecular NMR.

[15]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[16]  Roland L. Dunbrack,et al.  Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. , 1997, Journal of molecular biology.

[17]  D T Jones,et al.  Protein secondary structure prediction based on position-specific scoring matrices. , 1999, Journal of molecular biology.

[18]  A. Bax,et al.  Protein backbone angle restraints from searching a database for chemical shift and sequence homology , 1999, Journal of biomolecular NMR.

[19]  D. Case,et al.  Automated prediction of 15N, 13Cα, 13Cβ and 13C′ chemical shifts in proteins using a density functional database , 2001, Journal of biomolecular NMR.

[20]  L. Kay,et al.  Chi1 torsion angle dynamics in proteins from dipolar couplings. , 2001, Journal of the American Chemical Society.

[21]  James J. Chou,et al.  Protein side-chain rotamers from dipolar couplings in a liquid crystalline phase. , 2001, Journal of the American Chemical Society.

[22]  D. Wishart,et al.  Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts , 2003, Journal of Biomolecular NMR.

[23]  D. Wishart,et al.  Rapid and accurate calculation of protein 1H, 13C and 15N chemical shifts , 2003, Journal of biomolecular NMR.

[24]  A. Bax,et al.  Measurement of eight scalar and dipolar couplings for methine–methylene pairs in proteins and nucleic acids , 2005, Journal of biomolecular NMR.

[25]  Jan Hermans,et al.  Protein imperfections: separating intrinsic from extrinsic variation of torsion angles. , 2005, Acta crystallographica. Section D, Biological crystallography.

[26]  David S. Wishart,et al.  PREDITOR: a web server for predicting protein torsion angle restraints , 2006, Nucleic Acids Res..

[27]  A. Császár,et al.  Empirical isotropic chemical shift surfaces , 2007, Journal of biomolecular NMR.

[28]  D. Case,et al.  A new model for chemical shifts of amide hydrogens in proteins , 2007, Journal of biomolecular NMR.

[29]  H. Scheraga,et al.  Effects of side-chain orientation on the 13C chemical shifts of antiparallel β-sheet model peptides , 2007, Journal of biomolecular NMR.

[30]  A. Bax,et al.  Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology , 2007, Journal of biomolecular NMR.

[31]  David S. Wishart,et al.  Application of the random coil index to studying protein flexibility , 2008, Journal of biomolecular NMR.

[32]  Haruki Nakamura,et al.  BioMagResBank (BMRB) as a partner in the Worldwide Protein Data Bank (wwPDB): new policies affecting biomolecular NMR depositions , 2008, Journal of biomolecular NMR.

[33]  H. Scheraga,et al.  Quantum chemical 13Cα chemical shift calculations for protein NMR structure determination, refinement, and validation , 2008, Proceedings of the National Academy of Sciences.

[34]  D. Baker,et al.  De novo protein structure generation from incomplete chemical shift assignments , 2009, Journal of biomolecular NMR.

[35]  H. Scheraga,et al.  Quantum-mechanics-derived 13Cα chemical shift server (CheShift) for protein structure validation , 2009, Proceedings of the National Academy of Sciences.

[36]  Simon W. Ginzinger,et al.  SimShiftDB; local conformational restraints derived from chemical shift similarity searches on a large synthetic database , 2009, Journal of biomolecular NMR.

[37]  Kai J. Kohlhoff,et al.  Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. , 2009, Journal of the American Chemical Society.

[38]  A. Bax,et al.  TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts , 2009, Journal of biomolecular NMR.

[39]  Kai J. Kohlhoff,et al.  Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. , 2010, Structure.

[40]  A. Bax,et al.  SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network , 2010, Journal of biomolecular NMR.

[41]  Michael Y. Galperin,et al.  Sequence ― Evolution ― Function: Computational Approaches in Comparative Genomics , 2010 .

[42]  H. Scheraga,et al.  Sequential nearest-neighbor effects on computed 13Cα chemical shifts , 2010, Journal of biomolecular NMR.

[43]  R. Brüschweiler,et al.  Certification of Molecular Dynamics Trajectories with NMR Chemical Shifts , 2010 .

[44]  Tim J Stevens,et al.  DANGLE: A Bayesian inferential method for predicting protein backbone dihedral angles and secondary structure. , 2010, Journal of magnetic resonance.

[45]  Simon W. Ginzinger,et al.  SHIFTX2: significantly improved protein chemical shift prediction , 2011, Journal of biomolecular NMR.

[46]  Aleksandr B. Sahakyan,et al.  Structure-based prediction of methyl chemical shifts in proteins , 2011, Journal of biomolecular NMR.

[47]  Roland L. Dunbrack,et al.  A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. , 2011, Structure.

[48]  Liang Tong,et al.  The structure of human ubiquitin in 2‐methyl‐2,4‐pentanediol: A new conformational switch , 2011, Protein science : a publication of the Protein Society.

[49]  Krzysztof Fidelis,et al.  CASP9 results compared to those of previous casp experiments , 2011, Proteins.

[50]  David S Wishart,et al.  Interpreting protein chemical shift data. , 2011, Progress in nuclear magnetic resonance spectroscopy.

[51]  Jürgen M. Schmidt Transforming between discrete and continuous angle distribution models: application to protein χ1 torsions , 2012, Journal of Biomolecular NMR.

[52]  R. Brüschweiler,et al.  PPM: a side-chain and backbone chemical shift predictor for the assessment of protein conformational ensembles , 2012, Journal of Biomolecular NMR.

[53]  Haruki Nakamura,et al.  The Protein Data Bank at 40: reflecting on the past to prepare for the future. , 2012, Structure.

[54]  Yang Shen,et al.  Identification of helix capping and β-turn motifs from NMR chemical shifts , 2012, Journal of biomolecular NMR.

[55]  N. Nielsen,et al.  Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field. , 2012, Progress in nuclear magnetic resonance spectroscopy.

[56]  Cbrister,et al.  Empirical Correlation between Protein Backbone Conformation and Ca and C @ 13 C Nuclear Magnetic Resonance Chemical Shifts , 2022 .