Progress in satellite remote sensing of ice sheets

Understanding the changing mass balance and surface dynamics of the Earth’s major ice sheets in Greenland and Antarctica is of fundamental importance for accurate predictions of future sea-level rise. In this review, the remote sensing data sources available to ice-sheet studies are considered and the range of information that can be gained from remote sensing is examined. The review demonstrates that the integration of a range of remote sensing data sets can provide information on ice-sheet dynamics and volume changes, melt patterns and formation and drainage of supra- and subglacial lakes. Such data are highly complementary to field investigations by providing a regional-scale, synoptic perspective. The review concludes that emerging remote sensing techniques such as SAR interferometry, feature tracking, scatterometry, altimetry and gravimetry provide vital information without which an understanding of ice sheets would be far less advanced. It also concludes that there remain several key challenges for remote sensing, in particular relating to the observation of rapid dynamical changes that are characteristic of contemporary ice-sheet response to continued climatic warming.

[1]  D. J. Drewry,et al.  International Studies of Ice Sheet and Bedrock , 1977 .

[2]  W. Krabill,et al.  Progressive increase in ice loss from Greenland , 2006 .

[3]  Jack T. Beavers,et al.  Mass balance , 2019, Principles of Glacier Mechanics.

[4]  Ian Joughin,et al.  Seasonal Speedup Along the Western Flank of the Greenland Ice Sheet , 2008, Science.

[5]  Jason E. Box,et al.  Remote sounding of Greenland supraglacial melt lakes: implications for subglacial hydraulics , 2007, Journal of Glaciology.

[6]  K. Mullins,et al.  Velocities of Pine Island Glacier, West Antarctica, from ERS-1 SAR images , 1995, Annals of Glaciology.

[7]  B. D. Tapley,et al.  Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet , 2006, Science.

[8]  Leif Toudal Pedersen,et al.  Modelling the evolution of supraglacial lakes on the West Greenland ice-sheet margin , 2006 .

[9]  Philippe Huybrechts,et al.  The Dynamic Response of the Greenland and Antarctic Ice Sheets to Multiple-Century Climatic Warming , 1999 .

[10]  Kenneth C. Jezek,et al.  Glaciological properties of the Antarctic ice sheet from RADARSAT-1 synthetic aperture radar imagery , 1999, Annals of Glaciology.

[11]  Jonathan L. Bamber,et al.  The accuracy of digital elevation models of the Antarctic continent , 2005 .

[12]  Eric Rignot,et al.  Recent ice loss from the Fleming and other glaciers, Wordie Bay, West Antarctic Peninsula , 2005, Geophysical Research Letters.

[13]  Adrian Luckman,et al.  The potential of satellite radar interferometry and feature tracking for monitoring flow rates of Himalayan glaciers , 2007 .

[14]  S. Carter,et al.  A revised inventory of Antarctic subglacial lakes , 2004, Antarctic Science.

[15]  Jonathan L. Bamber,et al.  A new, high‐resolution digital elevation model of Greenland fully validated with airborne laser altimeter data , 2001 .

[16]  B. D. Smith North and Northeast Greenland Ice Discharge from Satellite Radar Interferometry , 1997 .

[17]  Konrad Steffen,et al.  Investigation of surface melting and dynamic thinning on Jakobshavn Isbrae, Greenland , 2003 .

[18]  Johan J. Mohr,et al.  Three-dimensional glacial flow and surface elevation measured with radar interferometry , 1998, Nature.

[19]  W. Krabill,et al.  Elevation changes on the Greenland ice sheet from comparison of aircraft and ICESat laser-altimeter data , 2005, Annals of Glaciology.

[20]  Helmut Rott,et al.  Northern Larsen Ice Shelf, Antarctica: further retreat after collapse , 2002, Annals of Glaciology.

[21]  W. Paul Menzel,et al.  Nighttime polar cloud detection with MODIS , 2004 .

[22]  R. Heelis,et al.  Regional, scale size, and interplanetary magnetic field variability of magnetic field and ion drift structures in the high‐latitude ionosphere , 1999 .

[23]  R. Bindschadler,et al.  The Landsat Image Mosaic of Antarctica , 2008 .

[24]  H. Rott,et al.  Breakup and conditions for stability of the northern Larsen Ice Shelf, Antarctica , 1998, Nature.

[25]  H. Rott,et al.  Rapid Collapse of Northern Larsen Ice Shelf, Antarctica , 1996, Science.

[26]  T. Scambos,et al.  The link between climate warming and break-up of ice shelves in the Antarctic Peninsula , 2000, Journal of Glaciology.

[27]  Ian Warren,et al.  Modelling for Evolution , 1999 .

[28]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[29]  B. Anderson,et al.  The rising tide: assessing the risks of climate change and human settlements in low elevation coastal zones , 2007 .

[30]  N. White,et al.  A 20th century acceleration in global sea‐level rise , 2006 .

[31]  James L. Fastook,et al.  ICESat profiles of tabular iceberg margins and iceberg breakup at low latitudes , 2005 .

[32]  H. Jay Zwally,et al.  Precision and Accuracy of Satellite Radar and Laser Altimeter Data Over the Continental Ice Sheets , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[33]  Edward Hanna,et al.  Snowfall-Driven Growth in East Antarctic Ice Sheet Mitigates Recent Sea-Level Rise , 2005, Science.

[34]  Propagation of Big Island eddies , 2001 .

[35]  R. S. Williams,et al.  Satellite‐derived, melt‐season surface temperature of the Greenland Ice Sheet (2000–2005) and its relationship to mass balance , 2006 .

[36]  Marc Bernard,et al.  SPIRIT. SPOT 5 stereoscopic survey of Polar Ice: Reference Images and Topographies during the fourth International Polar Year (2007-2009) , 2008 .

[37]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[38]  Koichiro Doi,et al.  A case study of generating a digital elevation model for the Soya Coast area, Antarctica, using JERS-1 SAR interferometry , 1999 .

[39]  R. Nerem,et al.  Recent Greenland Ice Mass Loss by Drainage System from Satellite Gravity Observations , 2006, Science.

[40]  A. Vieli,et al.  Causes of pre-collapse changes of the Larsen B ice shelf: Numerical modelling and assimilation of satellite observations , 2007 .

[41]  Eric Rignot,et al.  Accelerated ice discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf , 2004 .

[42]  Hongxing Liu,et al.  A Complete High-Resolution Coastline of Antarctica Extracted from Orthorectified Radarsat SAR Imagery , 2004 .

[43]  Corinne Le Quéré,et al.  Climate Change 2013: The Physical Science Basis , 2013 .

[44]  David G. Long,et al.  Calving and ice-shelf break-up processes investigated by proxy: Antarctic tabular iceberg evolution during northward drift , 2008 .

[45]  Tazio Strozzi,et al.  ERS SAR feature-tracking measurement of outlet glacier velocities on a regional scale in East Greenland , 2003, Annals of Glaciology.

[46]  J. Dowdeswell,et al.  The dimensions and topographic setting of Antarctic subglacial lakes and implications for large-scale water storage beneath continental ice sheets , 1999 .

[47]  Tavi Murray,et al.  Rapid and synchronous ice‐dynamic changes in East Greenland , 2006 .

[48]  J. Wahr,et al.  Acceleration of Greenland ice mass loss in spring 2004 , 2006, Nature.

[49]  Ron Kwok,et al.  Estimation of ice-sheet motion using satellite radar interferometry: method and error analysis with application to Humboldt Glacier, Greenland , 1996, Journal of Glaciology.

[50]  Ian Joughin,et al.  Large fluctuations in speed on Greenland's Jakobshavn Isbræ glacier , 2004, Nature.

[51]  C. Deehr,et al.  Ground‐based optical observations of hydrogen emission in the auroral substorm , 2001 .

[52]  Baerbel K. Lucchitta,et al.  Velocities of Pine Island Glacier, West Antarctica, from ERS-1 SAR images , 1995 .

[53]  Eric Rignot,et al.  Mass Balance of Polar Ice Sheets , 2002, Science.

[54]  Ron Kwok,et al.  Measurement of ice-sheet topography using satellite-radar interferometry , 1996 .

[55]  M. Hambrey,et al.  Is the Greenland Ice Sheet in a state of collapse? , 2006 .

[56]  Jonathan M. Gregory,et al.  Climatology: Threatened loss of the Greenland ice-sheet , 2004, Nature.

[57]  Andrew Shepherd,et al.  Recent Sea-Level Contributions of the Antarctic and Greenland Ice Sheets , 2007, Science.

[58]  Gerhard Krieger,et al.  TanDEM-X: A Satellite Formation for High-Resolution SAR Interferometry , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[59]  W. Rack,et al.  Pattern of retreat and disintegration of the Larsen B ice shelf, Antarctic Peninsula , 2004, Annals of Glaciology.

[60]  Hongxing Liu,et al.  Development of an Antarctic digital elevation model by integrating cartographic and remotely sensed data: A geographic information system based approach , 1999 .

[61]  J. Bamber,et al.  A review of remote sensing methods for glacier mass balance determination , 2007 .

[62]  Eric Rignot,et al.  Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data , 2008 .

[63]  T. Painter,et al.  MODIS-based Mosaic of Antarctica (MOA) data sets: Continent-wide surface morphology and snow grain size , 2007 .

[64]  Ian Joughin,et al.  Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage , 2008, Science.

[65]  R. Coleman,et al.  Digital elevation models for the Lambert Glacier–Amery Ice Shelf system, East Antarctica, from ERS-1 satellite radar altimetry , 2000, Journal of Glaciology.

[66]  Konrad Steffen,et al.  Greenland Ice Sheet melt extent: 1979–1999 , 2001 .

[67]  Thomas L. Mote,et al.  Greenland surface melt trends 1973–2007: Evidence of a large increase in 2007 , 2007 .

[68]  B. Lucchitta,et al.  Retreat of northern margins of George VI and Wilkins Ice Shelves, Antarctic Peninsula , 1998, Annals of Glaciology.

[69]  K. Steffen,et al.  Comparison of satellite-derived and in-situ observations of ice and snow surface temperatures over Greenland , 2008 .

[70]  A. Kääb Monitoring high-mountain terrain deformation from repeated air- and spaceborne optical data: examples using digital aerial imagery and ASTER data , 2002 .

[71]  Michel Fily,et al.  Variability and trends of the summer melt period of Antarctic ice margins since 1980 from microwave sensors , 2003 .

[72]  H. J. Zwally,et al.  Spatial distribution of net surface accumulation on the Antarctic ice sheet , 2000, Annals of Glaciology.

[73]  B. Csathó,et al.  Mass balance of the northeast sector of the Greenland ice sheet: A remote-sensing perspective , 2000 .

[74]  M. Watkins,et al.  The gravity recovery and climate experiment: Mission overview and early results , 2004 .

[75]  M. Siegert,et al.  Determining basal ice-sheet conditions in the Dome C region of East Antarctica using satellite radar altimetry and airborne radio-echo sounding , 1998 .

[76]  Kirill Khvorostovsky,et al.  Recent Ice-Sheet Growth in the Interior of Greenland , 2005, Science.

[77]  E. Rignot,et al.  Changes in the Velocity Structure of the Greenland Ice Sheet , 2006, Science.

[78]  Duncan J. Wingham,et al.  Inland thinning of the Amundsen Sea sector, West Antarctica , 2002 .

[79]  Son V. Nghiem,et al.  Snow Accumulation and Snowmelt Monitoring in Greenland and Antarctica , 2007 .

[80]  R. Alley,et al.  Ice-Sheet and Sea-Level Changes , 2005, Science.

[81]  T. Scambos,et al.  Rapid Changes in Ice Discharge from Greenland Outlet Glaciers , 2007, Science.

[82]  Julienne C. Stroeve,et al.  Evaluation of the MODIS (MOD10A1) daily snow albedo product over the Greenland ice sheet , 2006 .

[83]  A. Gregg An integration. , 1953, Journal of the Mount Sinai Hospital, New York.

[84]  P. Kanagaratnam,et al.  Accelerated Sea-Level Rise from West Antarctica , 2004, Science.

[85]  Jack L. Saba,et al.  Mass changes of the Greenland and Antarctic ice sheets and shelves and contributions to sea-level rise: 1992-2002 , 2005 .

[86]  Guillaume Ramillien,et al.  Interannual variations of the mass balance of the Antarctica and Greenland ice sheets from GRACE , 2006 .

[87]  F. Adler A Case , 1863, The Lancet.

[88]  Urs Wegmüller,et al.  Glacier motion estimation using SAR offset-tracking procedures , 2002, IEEE Trans. Geosci. Remote. Sens..

[89]  Son V. Nghiem,et al.  The melt anomaly of 2002 on the Greenland Ice Sheet from active and passive microwave satellite observations , 2004 .

[90]  L. Stearns,et al.  Rapid volume loss from two East Greenland outlet glaciers quantified using repeat stereo satellite imagery , 2007 .

[91]  Konrad Steffen,et al.  Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow , 2002, Science.

[92]  Ronald Kwok,et al.  Ice sheet motion and topography from radar interferometry , 1996, IEEE Trans. Geosci. Remote. Sens..

[93]  G. Oswald,et al.  Lakes Beneath the Antarctic Ice Sheet , 1973, Nature.

[94]  David G. Long,et al.  Greenland snow accumulation estimates from satellite radar scatterometer data , 2001 .

[95]  P. Skvarca,et al.  Larsen Ice Shelf Has Progressively Thinned , 2003, Science.

[96]  M. Braun,et al.  Changes of Wilkins Ice Shelf over the past 15 years and inferences on its stability , 2008 .

[97]  M. Siegert,et al.  A large deep freshwater lake beneath the ice of central East Antarctica , 1996, Nature.

[98]  K. Jezek,et al.  Velocities and Flux of the Filchner Ice Shelf and its Tributaries Determined from Speckle Tracking Interferometry , 2001 .

[99]  T. Scambos,et al.  Ice shelf disintegration by plate bending and hydro-fracture: Satellite observations and model results of the 2008 Wilkins ice shelf break-ups , 2009 .

[100]  Ian M. Howat,et al.  Rapid retreat and acceleration of Helheim Glacier, east Greenland , 2005 .

[101]  E. Rignot,et al.  Fast recession of a west antarctic glacier , 1998, Science.

[102]  N. Glasser,et al.  A structural glaciological analysis of the 2002 Larsen B ice-shelf collapse , 2007, Journal of Glaciology.

[103]  T. Scambos,et al.  Glacier acceleration and thinning after ice shelf collapse in the Larsen B embayment, Antarctica , 2004 .

[104]  B. T. San,et al.  Digital elevation model (DEM) generation and accuracy assessment from ASTER stereo data , 2005 .

[105]  Pedro Skvarca,et al.  Climatic conditions, mass balance and dynamics of Larsen B ice shelf, Antarctic Peninsula, prior to collapse , 2004, Annals of Glaciology.

[106]  Guanhua Xu,et al.  The integration of JERS-1 and ERS SAR in differential interferometry for measurement of complex glacier motion , 2006, Journal of Glaciology.

[107]  W. Cudlip,et al.  IDENTIFICATION OF SUBGLACIAL LAKES USING ERS-1 RADAR ALTIMETER , 1993 .

[108]  Ian R. Joughin,et al.  Interferometric estimation of three-dimensional ice-flow using ascending and descending passes , 1998, IEEE Trans. Geosci. Remote. Sens..