The unbiased diffusion Monte Carlo: a versatile tool for two-electron systems confined in different geometries
暂无分享,去创建一个
[1] Loriano Storchi,et al. A database approach for materials selection for hydrogen storage in aerospace technology , 2019, Rendiconti Lincei. Scienze Fisiche e Naturali.
[2] Rolando Franco,et al. Part One , 1978, Disrupted Childhoods.
[3] J. Tennyson,et al. A global potential energy surface for H3+ , 2018, Molecular Physics.
[4] E. L. Koo. Recent progress in confined atoms and molecules: Superintegrability and symmetry breakings , 2018 .
[5] E. Drigo Filho,et al. Ground-state energy for confined H2: a variational approach , 2018, Theoretical Chemistry Accounts.
[6] V. Prasad,et al. Shape effect on information theoretic measures of quantum heterostructures , 2018 .
[7] D. Giordano,et al. Monte Carlo calculation of the potential energy surface for octahedral confined H$$_2^+$$2+ , 2018, 1904.01319.
[8] D. Giordano,et al. Quantum states of confined hydrogen plasma species: Monte Carlo calculations , 2015, 1904.01309.
[9] F. El-Gammal,et al. Ground-state calculations of confined hydrogen molecule H2 using variational Monte Carlo method , 2015, 1509.02567.
[10] S. Longo,et al. Confined H(1s) and H(2p) under different geometries , 2015, 1903.07945.
[11] S. Longo,et al. Spherically confined H2+: 2 &Sgr; g + ?> and 2 &Sgr; u + ?> states , 2015, 1904.01299.
[12] A. Sarsa,et al. Study of Quantum Confinement of {\text{H}}_{2}^{ + } Ion and H2 Molecule with Monte Carlo. Respective Role of the Electron and Nuclei Confinement , 2014 .
[13] K. Sen. Electronic Structure of Quantum Confined Atoms and Molecules , 2014 .
[14] J. M. Alcaraz-Pelegrina,et al. Quantum confinement of the covalent bond beyond the Born-Oppenheimer approximation. , 2013, The journal of physical chemistry. B.
[15] L. Adamowicz,et al. Progress in calculating the potential energy surface of H3+ , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[16] A. Sarsa,et al. Quantum confinement study of the H+2 ion with the Monte Carlo approach. Respective role of electron and nuclei confinement , 2012 .
[17] S. A. Cruz,et al. The hydrogen molecule inside prolate spheroidal boxes: full nuclear position optimization , 2010 .
[18] G. A. Norton. Revista Mexicana de Física , 2010 .
[19] W. Thiel,et al. Coordination chemistry at carbon. , 2009, Nature chemistry.
[20] L. Adamowicz,et al. New more accurate calculations of the ground state potential energy surface of H(3) (+). , 2009, The Journal of chemical physics.
[21] K. Sen,et al. Exact Relations for Confined One-Electron Systems , 2009 .
[22] J. Thijssen. Computational Physics by Jos Thijssen , 2007 .
[23] G. Campoy,et al. Highly accurate solutions for the confined hydrogen atom , 2007 .
[24] A. V. Scherbinin,et al. Energy levels of the hydrogen atom in a cylindrical cavity , 2006 .
[25] B. Burrows,et al. Exact solutions for spherically confined hydrogen-like atoms , 2006 .
[26] R. Santamaria,et al. Endohedral confinement of molecular hydrogen , 2004 .
[27] Y. Kawazoe,et al. Polaron in a one-dimensional C 60 crystal , 2003 .
[28] Donald G. Truhlar,et al. Theoretical Chemistry Accounts , 2001 .
[29] R. Needs,et al. Quantum Monte Carlo simulations of solids , 2001 .
[30] P. Harrison. Quantum wells, wires, and dots : theoretical and computational physics , 2016 .
[31] D. Wardlaw,et al. Potential energy surfaces for the collinear H3+ system , 2000 .
[32] P. Harrison,et al. Quantum wells, wires, and dots , 2000 .
[33] S. Manson,et al. A unique situation for an endohedral metallofullerene , 1999 .
[34] J. Thijssen,et al. Computational Physics , 1999 .
[35] W. Jaskólski. Confined many-electron systems , 1996 .
[36] J. Hernández-Rojas,et al. Rotational spectra for off‐center endohedral atoms at C60 fullerene , 1996 .
[37] W. Kutzelnigg,et al. Potential energy surface of the H+3 ground state in the neighborhood of the minimum with microhartree accuracy and vibrational frequencies derived from it , 1994 .
[38] Pang. Hydrogen molecule under confinement: Exact results. , 1994, Physical review. A, Atomic, molecular, and optical physics.
[39] Porras-Montenegro,et al. Hydrogenic impurities in GaAs-(Ga,Al)As quantum dots. , 1992, Physical review. B, Condensed matter.
[40] Mei,et al. Hydrogenic impurity states in quantum dots and quantum wires. , 1992, Physical review. B, Condensed matter.
[41] James B. Anderson,et al. Quantum chemistry by random walk: Higher accuracy for H+3 , 1992 .
[42] R. LeSar,et al. Polarizability and quadrupole moment of a hydrogen molecule in a spheroidal box , 1983 .
[43] R. LeSar,et al. Electronic and vibrational properties of molecules at high pressures. Hydrogen molecule in a rigid spheroidal box , 1981 .
[44] A. Penzkofer,et al. CHEMICAL PHYSICS LETTERS , 1976 .
[45] James B. Anderson,et al. A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .
[46] C. Coulson,et al. Coordination Chemistry , 1968, Nature.
[47] H. Conroy. Potential Energy Surfaces for the H3+ Molecule‐Ion , 1964 .
[48] S. D. Groot,et al. On the energy levels of a model of the compressed hydrogen atom , 1946 .
[49] A. Sommerfeld,et al. Künstliche Grenzbedingungen beim Keplerproblem , 1938 .
[50] J. D. Boer,et al. Remarks concerning molecural interaction and their influence on the polarisability , 1937 .