The unbiased diffusion Monte Carlo: a versatile tool for two-electron systems confined in different geometries

[1]  Loriano Storchi,et al.  A database approach for materials selection for hydrogen storage in aerospace technology , 2019, Rendiconti Lincei. Scienze Fisiche e Naturali.

[2]  Rolando Franco,et al.  Part One , 1978, Disrupted Childhoods.

[3]  J. Tennyson,et al.  A global potential energy surface for H3+ , 2018, Molecular Physics.

[4]  E. L. Koo Recent progress in confined atoms and molecules: Superintegrability and symmetry breakings , 2018 .

[5]  E. Drigo Filho,et al.  Ground-state energy for confined H2: a variational approach , 2018, Theoretical Chemistry Accounts.

[6]  V. Prasad,et al.  Shape effect on information theoretic measures of quantum heterostructures , 2018 .

[7]  D. Giordano,et al.  Monte Carlo calculation of the potential energy surface for octahedral confined H$$_2^+$$2+ , 2018, 1904.01319.

[8]  D. Giordano,et al.  Quantum states of confined hydrogen plasma species: Monte Carlo calculations , 2015, 1904.01309.

[9]  F. El-Gammal,et al.  Ground-state calculations of confined hydrogen molecule H2 using variational Monte Carlo method , 2015, 1509.02567.

[10]  S. Longo,et al.  Confined H(1s) and H(2p) under different geometries , 2015, 1903.07945.

[11]  S. Longo,et al.  Spherically confined H2+: 2 &Sgr; g + ?> and 2 &Sgr; u + ?> states , 2015, 1904.01299.

[12]  A. Sarsa,et al.  Study of Quantum Confinement of {\text{H}}_{2}^{ + } Ion and H2 Molecule with Monte Carlo. Respective Role of the Electron and Nuclei Confinement , 2014 .

[13]  K. Sen Electronic Structure of Quantum Confined Atoms and Molecules , 2014 .

[14]  J. M. Alcaraz-Pelegrina,et al.  Quantum confinement of the covalent bond beyond the Born-Oppenheimer approximation. , 2013, The journal of physical chemistry. B.

[15]  L. Adamowicz,et al.  Progress in calculating the potential energy surface of H3+ , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[16]  A. Sarsa,et al.  Quantum confinement study of the H+2 ion with the Monte Carlo approach. Respective role of electron and nuclei confinement , 2012 .

[17]  S. A. Cruz,et al.  The hydrogen molecule inside prolate spheroidal boxes: full nuclear position optimization , 2010 .

[18]  G. A. Norton Revista Mexicana de Física , 2010 .

[19]  W. Thiel,et al.  Coordination chemistry at carbon. , 2009, Nature chemistry.

[20]  L. Adamowicz,et al.  New more accurate calculations of the ground state potential energy surface of H(3) (+). , 2009, The Journal of chemical physics.

[21]  K. Sen,et al.  Exact Relations for Confined One-Electron Systems , 2009 .

[22]  J. Thijssen Computational Physics by Jos Thijssen , 2007 .

[23]  G. Campoy,et al.  Highly accurate solutions for the confined hydrogen atom , 2007 .

[24]  A. V. Scherbinin,et al.  Energy levels of the hydrogen atom in a cylindrical cavity , 2006 .

[25]  B. Burrows,et al.  Exact solutions for spherically confined hydrogen-like atoms , 2006 .

[26]  R. Santamaria,et al.  Endohedral confinement of molecular hydrogen , 2004 .

[27]  Y. Kawazoe,et al.  Polaron in a one-dimensional C 60 crystal , 2003 .

[28]  Donald G. Truhlar,et al.  Theoretical Chemistry Accounts , 2001 .

[29]  R. Needs,et al.  Quantum Monte Carlo simulations of solids , 2001 .

[30]  P. Harrison Quantum wells, wires, and dots : theoretical and computational physics , 2016 .

[31]  D. Wardlaw,et al.  Potential energy surfaces for the collinear H3+ system , 2000 .

[32]  P. Harrison,et al.  Quantum wells, wires, and dots , 2000 .

[33]  S. Manson,et al.  A unique situation for an endohedral metallofullerene , 1999 .

[34]  J. Thijssen,et al.  Computational Physics , 1999 .

[35]  W. Jaskólski Confined many-electron systems , 1996 .

[36]  J. Hernández-Rojas,et al.  Rotational spectra for off‐center endohedral atoms at C60 fullerene , 1996 .

[37]  W. Kutzelnigg,et al.  Potential energy surface of the H+3 ground state in the neighborhood of the minimum with microhartree accuracy and vibrational frequencies derived from it , 1994 .

[38]  Pang Hydrogen molecule under confinement: Exact results. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[39]  Porras-Montenegro,et al.  Hydrogenic impurities in GaAs-(Ga,Al)As quantum dots. , 1992, Physical review. B, Condensed matter.

[40]  Mei,et al.  Hydrogenic impurity states in quantum dots and quantum wires. , 1992, Physical review. B, Condensed matter.

[41]  James B. Anderson,et al.  Quantum chemistry by random walk: Higher accuracy for H+3 , 1992 .

[42]  R. LeSar,et al.  Polarizability and quadrupole moment of a hydrogen molecule in a spheroidal box , 1983 .

[43]  R. LeSar,et al.  Electronic and vibrational properties of molecules at high pressures. Hydrogen molecule in a rigid spheroidal box , 1981 .

[44]  A. Penzkofer,et al.  CHEMICAL PHYSICS LETTERS , 1976 .

[45]  James B. Anderson,et al.  A random‐walk simulation of the Schrödinger equation: H+3 , 1975 .

[46]  C. Coulson,et al.  Coordination Chemistry , 1968, Nature.

[47]  H. Conroy Potential Energy Surfaces for the H3+ Molecule‐Ion , 1964 .

[48]  S. D. Groot,et al.  On the energy levels of a model of the compressed hydrogen atom , 1946 .

[49]  A. Sommerfeld,et al.  Künstliche Grenzbedingungen beim Keplerproblem , 1938 .

[50]  J. D. Boer,et al.  Remarks concerning molecural interaction and their influence on the polarisability , 1937 .