Emptiness Is Decidable for Asynchronous Cellular Machines
暂无分享,去创建一个
[1] Philippe Schnoebelen,et al. Well-structured transition systems everywhere! , 2001, Theor. Comput. Sci..
[2] Anca Muscholl,et al. Logical Definability on Infinite Traces , 1996, Theor. Comput. Sci..
[3] Graham Higman,et al. Ordering by Divisibility in Abstract Algebras , 1952 .
[4] Dietrich Kuske,et al. Asynchronous Cellular Automata and Asynchronous Automata for Pomsets , 1998, CONCUR.
[5] Paul Gastin,et al. Asynchronous Cellular Automata for Infinite Traces , 1992, ICALP.
[6] J. Büchi. Weak Second‐Order Arithmetic and Finite Automata , 1960 .
[7] Paul Gastin,et al. Asynchronous Cellular Automata for Pomsets Without Auto-concurrency , 1996, CONCUR.
[8] Edmund M. Clarke,et al. Model Checking , 1999, Handbook of Automated Reasoning.
[9] Volker Diekert,et al. The Book of Traces , 1995 .
[10] Peter H. Starke,et al. Processes in Petri Nets , 1981, J. Inf. Process. Cybern..
[11] Jay L. Gischer,et al. The Equational Theory of Pomsets , 1988, Theor. Comput. Sci..
[12] Paul Gastin,et al. Asynchronous cellular automata for pomsets , 2000, Theor. Comput. Sci..
[13] Wieslaw Zielonka,et al. Notes on Finite Asynchronous Automata , 1987, RAIRO Theor. Informatics Appl..