Rational solutions to an extended Kadomtsev-Petviashvili-like equation with symbolic computation

Associated with the prime number p = 3 , the generalized bilinear operators are adopted to yield an extended Kadomtsev-Petviashvili-like (eKP-like) equation. With symbolic computation, eighteen classes of rational solutions to the resulting eKP-like equation are generated from a search for polynomial solutions to the corresponding generalized bilinear equation.

[1]  De-sheng Li,et al.  New soliton-like solutions to the potential Kadomstev-Petviashvili (PKP) equation , 2003, Appl. Math. Comput..

[2]  Alan S. Osborne,et al.  THE FOURTEENTH 'AHA HULIKO' A HAWAIIAN WINTER WORKSHOP , 2005 .

[3]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[4]  B. Jalali,et al.  Optical rogue waves , 2007, Nature.

[5]  Johan Springael,et al.  On a direct procedure for the disclosure of Lax pairs and Bäcklund transformations , 2001 .

[6]  Frédéric Dias,et al.  The Peregrine soliton in nonlinear fibre optics , 2010 .

[7]  Deng-Shan Wang,et al.  Integrability and exact solutions of a two-component Korteweg-de Vries system , 2016, Appl. Math. Lett..

[8]  S. A. El-Wakil,et al.  Rogue waves for Kadomstev-Petviashvili equation in electron-positron-ion plasma , 2014 .

[9]  Kharif Christian,et al.  Rogue Waves in the Ocean , 2009 .

[10]  Xiang Gu,et al.  Hirota bilinear equations with linear subspaces of hyperbolic and trigonometric function solutions , 2013, Appl. Math. Comput..

[11]  Ye Tian,et al.  Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects , 2014, Appl. Math. Comput..

[12]  Yi Zhang,et al.  Rational solutions to a KdV-like equation , 2015, Appl. Math. Comput..

[13]  De-sheng Li,et al.  Symbolic computation and various exact solutions of potential Kadomstev-Petviashvili equation , 2003, Appl. Math. Comput..

[14]  J. Nimmo,et al.  On the combinatorics of the Hirota D-operators , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  Johan Springael,et al.  Construction of Bäcklund Transformations with Binary Bell Polynomials , 1997 .

[16]  Johan Springael,et al.  Soliton Equations and Simple Combinatorics , 2008 .

[17]  Johan Springael,et al.  On a direct bilinearization method : Kaup's higher-order water wave equation as a modified nonlocal Boussinesq equation , 1994 .

[18]  Bao-Zhu Zhao,et al.  Exact rational solutions to a Boussinesq-like equation in (1+1)-dimensions , 2015, Appl. Math. Lett..

[19]  Wenxiu Ma,et al.  Bilinear Equations and Resonant Solutions Characterized by Bell Polynomials , 2013 .

[20]  Deng-Shan Wang,et al.  Prolongation structures and matter-wave solitons in F=1 spinor Bose-Einstein condensate with time-dependent atomic scattering lengths in an expulsive harmonic potential , 2014, Commun. Nonlinear Sci. Numer. Simul..

[21]  Wenxiu Ma,et al.  Rational solutions of the Toda lattice equation in Casoratian form , 2004 .

[22]  Andrew G. Glen,et al.  APPL , 2001 .

[23]  Wenxiu Ma,et al.  Lump solutions to the Kadomtsev–Petviashvili equation , 2015 .

[24]  Johan Springael,et al.  On the Hirota Representation of Soliton Equations with One Tau-Function , 2001 .