Cellular automata as models of complexity

Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns. The origins of such complexity can be investigated through mathematical models termed ‘cellular automata’. Cellular automata consist of many identical components, each simple., but together capable of complex behaviour. They are analysed both as discrete dynamical systems, and as information-processing systems. Here some of their universal features are discussed, and some general principles are suggested.

[1]  Martin Gardner,et al.  Wheels, life, and other mathematical amusements , 1983 .

[2]  Alvy Ray Smith,et al.  Simple Computation-Universal Cellular Spaces , 1971, JACM.

[3]  D T Lindsay SIMULATING MOLLUSCAN SHELL PIGMENT LINES AND STATES IMPLICATIONS FOR PATTERN DIVERSITY , 1982 .

[4]  C H Waddington,et al.  Computer simulation of a mulluscan pigmentation pattern. , 1969, Journal of theoretical biology.

[5]  G. Vichniac Simulating physics with cellular automata , 1984 .

[6]  E. F. Codd,et al.  Cellular automata , 1968 .

[7]  Stephen Wolfram,et al.  Universality and complexity in cellular automata , 1983 .

[8]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[9]  A. Odlyzko,et al.  Algebraic properties of cellular automata , 1984 .

[10]  S. P. Hastings,et al.  Pattern formation and periodic structures in systems modeled by reaction-diffusion equations , 1978 .

[11]  N. Margolus Physics-like models of computation☆ , 1984 .

[12]  D. Lind Applications of ergodic theory and sofic systems to cellular automata , 1984 .

[13]  E. Berlekamp,et al.  Winning Ways for Your Mathematical Plays , 1983 .

[14]  Eytan Domany,et al.  Equivalence of Cellular Automata to Ising Models and Directed Percolation , 1984 .

[15]  D. A. Young A local activator-inhibitor model of vertebrate skin patterns , 1984 .

[16]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[17]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[18]  Journal of the Association for Computing Machinery , 1961, Nature.

[19]  B. Madore,et al.  Computer Simulations of the Belousov-Zhabotinsky Reaction , 1983, Science.

[20]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[21]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[22]  Peter Grassberger,et al.  Chaos and diffusion in deterministic cellular automata , 1984 .