Calretinin and calbindin D-28k delay the onset of cell death after excitotoxic stimulation in transfected P19 cells

[1]  L. Raymond,et al.  Calcium buffering and protection from excitotoxic cell death by exogenous calbindin-D28k in HEK 293 cells. , 2001, Cell calcium.

[2]  M. Monje,et al.  Gene therapy effectiveness differs for neuronal survival and behavioral performance , 2001, Gene Therapy.

[3]  I. Módy,et al.  Binding kinetics of calbindin-D(28k) determined by flash photolysis of caged Ca(2+) , 2000, Biophysical journal.

[4]  D. Jacobowitz,et al.  Vulnerability to Calcium-Induced Neurotoxicity in Cultured Neurons Expressing Calretinin , 2000, Experimental Neurology.

[5]  Suk-Ho Lee,et al.  Kinetics of Ca2+ binding to parvalbumin in bovine chromaffin cells: implications for [Ca2+] transients of neuronal dendrites , 2000, The Journal of physiology.

[6]  B. Schwaller,et al.  Neurodegenerative and morphogenic changes in a mouse model of temporal lobe epilepsy do not depend on the expression of the calcium-binding proteins parvalbumin, calbindin, or calretinin , 2000, Neuroscience.

[7]  M. Mattson,et al.  Concentration- and cell type-specific effects of calbindin D28k on vulnerability of hippocampal neurons to seizure-induced injury. , 2000, Brain research. Molecular brain research.

[8]  S. Sensi,et al.  AMPA Exposures Induce Mitochondrial Ca2+ Overload and ROS Generation in Spinal Motor Neurons In Vitro , 2000, The Journal of Neuroscience.

[9]  J. McLaughlin,et al.  Calbindin D28K Gene Transfer via Herpes Simplex Virus Amplicon Vector Decreases Hippocampal Damage In Vivo Following Neurotoxic Insults , 1999, Journal of neurochemistry.

[10]  I. Levitan,et al.  It Is Calmodulin After All! Mediator of the Calcium Modulation of Multiple Ion Channels , 1999, Neuron.

[11]  I. Kostović,et al.  Nucleus subputaminalis (ayala): the still disregarded magnocellular component of the basal forebrain may be human specific and connected with the cortical speech area , 1999, Neuroscience.

[12]  L. Raymond,et al.  Inhibition of Calcium‐Dependent NMDA Receptor Current Rundown by Calbindin‐D28k , 1999, Journal of neurochemistry.

[13]  D. Figlewicz,et al.  Glutamate Potentiates the Toxicity of Mutant Cu/Zn-Superoxide Dismutase in Motor Neurons by Postsynaptic Calcium-Dependent Mechanisms , 1998, The Journal of Neuroscience.

[14]  J. Lacaille,et al.  Selective loss of GABA neurons in area CA1 of the rat hippocampus after intraventricular kainate , 1998, Epilepsy Research.

[15]  R. Sapolsky,et al.  Gene Transfer of Calbindin D28k cDNA via Herpes Simplex Virus Amplicon Vector Decreases Cytoplasmic Calcium Ion Response and Enhances Neuronal Survival Following Glutamatergic Challenge but Not Following Cyanide , 1998, Journal of neurochemistry.

[16]  D. German,et al.  Calbindin-D28k buffers intracellular calcium and promotes resistance to degeneration in PC12 cells. , 1998, Brain research. Molecular brain research.

[17]  A. Reiner,et al.  Relative Resistance of Striatal Neurons Containing Calbindin or Parvalbumin to Quinolinic Acid-Mediated Excitotoxicity Compared to Other Striatal Neuron Types , 1998, Experimental Neurology.

[18]  J. Cox,et al.  Comparison of the Ca2+-binding Properties of Human Recombinant Calretinin-22k and Calretinin* , 1997, The Journal of Biological Chemistry.

[19]  K. Baimbridge,et al.  The effects of artificial calcium buffers on calcium responses and glutamate-mediated excitotoxicity in cultured hippocampal neurons , 1997, Neuroscience.

[20]  H. Thoenen,et al.  Vulnerability of Midbrain Dopaminergic Neurons in Calbindin‐D28k‐deficient Mice: Lack of Evidence for a Neuroprotective Role of Endogenous Calbindin in MPTPtreated and Weaver Mice , 1997, The European journal of neuroscience.

[21]  Y. Sagot,et al.  Injury‐induced Synthesis and Release of Apolipoprotein E and Clusterin from Rat Neural Cells , 1996, The European journal of neuroscience.

[22]  T. Tapiola,et al.  The Calretinin‐containing Mossy Cells Survive Excitotoxic Insult in the Gerbil Dentate Gyrus. Comparison of Excitotoxicity‐induced Neuropathological Changes in the Gerbil and Rat , 1996, The European journal of neuroscience.

[23]  D. Pleasure,et al.  Expression of N‐methyl‐D‐aspartate (NMDA) and non‐NMDA glutamate receptor genes in neuroblastoma, medulloblastoma, and other cell lines , 1996, Journal of neuroscience research.

[24]  D. Jacobowitz,et al.  The expression of calretinin in transfected PC12 cells provides no protection against Ca(2+)-overload or trophic factor deprivation. , 1996, Biochimica et biophysica acta.

[25]  R. Neve,et al.  Expression of the calcium-binding protein, parvalbumin, in cultured cortical neurons using a HSV-1 vector system enhances NMDA neurotoxicity. , 1996, Brain research. Molecular brain research.

[26]  A. Parent,et al.  Sparing of striatal neurons coexpressing calretinin and substance P (NK1) receptor in Huntington's disease , 1996, Brain Research.

[27]  B. Schwaller,et al.  Inhibition of the proliferative cycle and apoptotic events in WiDr cells after down-regulation of the calcium-binding protein calretinin using antisense oligodeoxynucleotides. , 1996, Experimental cell research.

[28]  C. Heizmann,et al.  α-Parvalbumin reduces depolarizationminduced elevations of cytosolic free calcium in human neuroblastoma cells , 1996 .

[29]  G. V. Van Hoesen,et al.  Contingent Vulnerability of Entorhinal Parvalbumin-Containing Neurons in Alzheimer’s Disease , 1996, The Journal of Neuroscience.

[30]  J. Hugon,et al.  Neuroprotective properties of calretinin against the HIV‐1 gp120 toxicity , 1996 .

[31]  Christian E. Elger,et al.  Preservation of Calretinin‐immunoreactive Neurons in the Hippocampus of Epilepsy Patients with Ammon's Horn Sclerosis , 1996, Journal of neuropathology and experimental neurology.

[32]  J. Luo,et al.  Pharmacological and immunological characterization of N-methyl-D-aspartate receptors in human NT2-N neurons. , 1996, The Journal of pharmacology and experimental therapeutics.

[33]  D. Jacobowitz,et al.  Differential effects of excitatory amino acids on mesencephalic neurons expressing either calretinin or tyrosine hydroxylase in primary cultures. , 1996, Brain research. Molecular brain research.

[34]  P. Mcgonigle,et al.  Excitotoxic cell death and delayed rescue in human neurons derived from NT2 cells , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  S. Lipton,et al.  Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function , 1995, Neuron.

[36]  C. Andressen,et al.  Changes in shape and motility of cells transfected with parvalbumin cDNA. , 1995, Experimental cell research.

[37]  C. Marcuccilli,et al.  Regulation of excitatory transmission at hippocampal synapses by calbindin D28k. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  W. Snider,et al.  Parvalbumin is a marker of ALS-resistant motor neurons. , 1995, Neuroreport.

[39]  A. Reiner,et al.  Brainstem motoneuron pools that are selectively resistant in amyotrophic lateral sclerosis are preferentially enriched in parvalbumin: Evidence from monkey brainstem for a calcium-mediated mechanism in sporadic ALS , 1995, Experimental Neurology.

[40]  D. Attwell,et al.  Triggering and execution of neuronal death in brain ischaemia: two phases of glutamate release by different mechanisms , 1994, Trends in Neurosciences.

[41]  E. Hirsch,et al.  Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson's disease? , 1994, Brain Research.

[42]  S. Rothman Excitotoxic neuronal death: mechanisms and clinical relevance , 1994 .

[43]  R. Kluck,et al.  Calcium chelators induce apoptosis--evidence that raised intracellular ionised calcium is not essential for apoptosis. , 1994, Biochimica et biophysica acta.

[44]  K. A. Jones,et al.  Cortical neurons containing calretinin are selectively resistant to calcium overload and excitotoxicity in vitro , 1994, Neuroscience.

[45]  V. Möckel,et al.  Vulnerability to excitotoxic stimuli of cultured rat hippocampal neurons containing the calcium-binding proteins calretinin and calbindin D28K , 1994, Brain Research.

[46]  D. Gottlieb,et al.  From embryonal carcinoma cells to neurons: The P19 pathway , 1994, BioEssays : news and reviews in molecular, cellular and developmental biology.

[47]  S. Lipton,et al.  Excitatory amino acids as a final common pathway for neurologic disorders. , 1994, The New England journal of medicine.

[48]  P Buchwald,et al.  Characterization of a polyclonal antiserum against the purified human recombinant calcium binding protein calretinin. , 1993, Cell calcium.

[49]  D. Gottlieb,et al.  Glutamate receptor-mediated currents and toxicity in embryonal carcinoma cells. , 1993, Journal of neurobiology.

[50]  Joseph Loscalzo,et al.  A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds , 1993, Nature.

[51]  I. Ferrer,et al.  Parvalbumin immunoreactivity in the hippocampus of the gerbil after transient forebrain ischaemia: A qualitative and quantitative sequential study , 1993, Neuroscience.

[52]  H. Wheal,et al.  Changes in parvalbumin-immunoreactive neurons in the rat hippocampus following a kainic acid lesion , 1993, Neuroscience Letters.

[53]  V. Lee,et al.  Inducible expression of neuronal glutamate receptor channels in the NT2 human cell line. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[54]  M. McBurney,et al.  P19 embryonal carcinoma cells. , 1993, The International journal of developmental biology.

[55]  J. Dubinsky Effects of calcium chelators on intracellular calcium and excitotoxicity , 1993, Neuroscience Letters.

[56]  M. Celio,et al.  Intracellular concentration of parvalbumin in nerve cells , 1993, Brain Research.

[57]  B. Komm,et al.  Stable expression of the calbindin-D28K complementary DNA interferes with the apoptotic pathway in lymphocytes. , 1992, Molecular endocrinology.

[58]  P. Emson,et al.  Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis , 1992, Neuron.

[59]  S. Sombati,et al.  Electrophysiology of glutamate neurotoxicity in vitro: induction of a calcium-dependent extended neuronal depolarization. , 1992, Journal of neurophysiology.

[60]  C. Heizmann,et al.  Changes in Ca2+-binding proteins in human neurodegenerative disorders , 1992, Trends in Neurosciences.

[61]  V M Lee,et al.  Pure, postmitotic, polarized human neurons derived from NTera 2 cells provide a system for expressing exogenous proteins in terminally differentiated neurons , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  D. German,et al.  Calbindin-D28K-containing neurons in animal models of neurodegeneration: possible protection from excitotoxicity. , 1992, Brain research. Molecular brain research.

[63]  C Doppler,et al.  Binding of NF-kB to the HIV-1 LTR is not sufficient to induce HIV-1 LTR activity. , 1992, AIDS research and human retroviruses.

[64]  D. Choi,et al.  Glutamate neurotoxicity in spinal cord cell culture , 1991, Neuroscience.

[65]  K. Hruska,et al.  Monitoring cytosolic calcium in parathyroid hormone target cells: Osteoblasts and renal epithelia , 1991 .

[66]  M. Dragunow,et al.  Differential sensitivity of calbindin and parvalbumin immunoreactive cells in the striatum to excitotoxins , 1991, Brain Research.

[67]  T. Fukuda,et al.  Immunohistochemical distribution of calcium‐activated neutral proteinases and endogenous CANP inhibitor in the rabbit hippocampus , 1990, The Journal of comparative neurology.

[68]  A. Fujimori,et al.  Nongenomic activation of the calcium message system by vitamin D metabolites in osteoblast-like cells. , 1990, Endocrinology.

[69]  G. Schalasta,et al.  Inhibition of c-fos transcription and phosphorylation of the serum response factor by an inhibitor of phospholipase C-type reactions , 1990, Molecular and cellular biology.

[70]  P. Emson,et al.  Calbindin D28K as a marker for the degeneration of the striatonigral pathway in Huntington's disease , 1990, Brain Research.

[71]  D. Choi,et al.  Cortical neurons containing somatostatin‐ or parvalbumin‐like immunoreactivity are atypically vulnerable to excitotoxic injury in vitro , 1990, Neurology.

[72]  C. Holt,et al.  Lipofection of cDNAs in the embryonic vertebrate central nervous system , 1990, Neuron.

[73]  S. B. Kater,et al.  Neurotransmitter regulation of neuronal outgrowth, plasticity and survival , 1989, Trends in Neurosciences.

[74]  S. Orrenius,et al.  Role of Ca2+ in toxic cell killing. , 1989, Trends in pharmacological sciences.

[75]  D. Choi,et al.  Glutamate neurotoxicity and diseases of the nervous system , 1988, Neuron.

[76]  W. Hunziker,et al.  Rat brain calbindin D28: six domain structure and extensive amino acid homology with chicken calbindin D28. , 1988, Molecular endocrinology.

[77]  J. Meldolesi,et al.  Fura-2 measurement of cytosolic free Ca2+ in monolayers and suspensions of various types of animal cells , 1987, The Journal of cell biology.

[78]  J. Levine,et al.  Cell surface changes accompanying the neural differentiation of an embryonal carcinoma cell line , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[79]  S. Grinstein,et al.  Bromo-A23187: a nonfluorescent calcium ionophore for use with fluorescent probes. , 1985, Analytical biochemistry.

[80]  R. Tsien,et al.  A new generation of Ca2+ indicators with greatly improved fluorescence properties. , 1985, The Journal of biological chemistry.

[81]  M. Rudnicki,et al.  Retinoic acid-induced neural differentiation of embryonal carcinoma cells , 1983, Molecular and cellular biology.

[82]  M. McBurney,et al.  Isolation of male embryonal carcinoma cells and their chromosome replication patterns. , 1982, Developmental biology.

[83]  P. Kourilsky,et al.  A new dominant hybrid selective marker for higher eukaryotic cells. , 1981, Journal of molecular biology.

[84]  J. Farber,et al.  Calcium dependence of toxic cell death: a final common pathway. , 1979, Science.

[85]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[86]  U. K. Laemmli,et al.  Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4 , 1970, Nature.

[87]  T. Pauls Versatile functions of Ca2+-binding proteins in signal transduction and Ca2+ homeostasis , 1995 .

[88]  K. Wirtz,et al.  Signalling Mechanisms — from Transcription Factors to Oxidative Stress , 1995, NATO ASI Series.

[89]  A. Iacopino Calbindin-D_ a potential neuroprotective protein. , 1994 .

[90]  Baimbridge Kg Calcium-binding proteins in the dentate gyrus. , 1992 .

[91]  M. Hollmann,et al.  Molecular neurobiology of glutamate receptors. , 1992, Annual review of physiology.